A Neuroendocrine Theory for the Etiology of Vitiligo

Zakiya M Cush*

The New York Medical College, Valhalla, New York, USA

Abstract

It has long been believed that vitiligo is an autoimmune disease. And while there are many theories of this disease process, which include cytotoxic and hereditary, there is another approach, which has yet to be considered. This paper will present a neuroendocrine hypothesis to why vitiligo occurs. With the understanding of the tyrosinase enzyme, tyrosine kinase activity, and the Melanocytic Stimulating Hormone (MSH-α) and its effect on melanocyte production, an alternative approach to vitiligo should be considered, and it begins in the brain.

Introduction

What is vitiligo?

Vitiligo is an acquired cutaneous disorder of pigmentation, with an incidence of 0.5% to 2% worldwide which, manifests as white macules on the skin (Figure 1) and can cause significant psychological stress and stigmatization [1,2]. Recent data provide strong evidence supporting an autoimmune pathogenesis of vitiligo [1].

Current advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response those targets melanocytes, driving progressive skin depigmentation [3].

Biochemistry of melanin formation

According to published research, the adenylate cyclase signaling pathway, the stimulation of protein kinase C via DAG and the tyrosine kinase activity mechanism (Figure 2) are responsible for the proliferation of melanocytes in mammals [4].

Autoimmune, cytotoxic, and hereditary concepts of vitiligo

The etiology of vitiligo is poorly understood. The present dogma suggests that genetic factors render the melanocyte fragile thus predisposing individuals to develop vitiligo [6].

Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes (Figure 3).
The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response those targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of this disease’s etiology has been made on three fronts: (1) Identifying cellular responses to stress, including antioxidant pathways and the Unfolded Protein Response (UPR), as key players in disease onset, (2) Characterizing immune responses that target melanocytes and drive disease progression, and (3) Identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the Endoplasmic Reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as Interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the Interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo [3].

**Melanocyte stimulating hormone**

The α-melanocyte stimulating hormone is under hypothalamic control, and is released by the anterior pituitary gland (Figure 4).

In turn, the α-Melanocyte Stimulating Hormone (alpha-MSH) in mammals is responsible for stimulating the adenylate cyclase and tyrosine activity binding to normal human melanocytes via high affinity receptors and stimulating melanocyte proliferation [4]. Given this, one feels compelled to ask: what would happen if these signaling pathways were defunct? In other words, can the abnormal proliferation of melanocytes, which we see in vitiligo be attributed to altered α-MSH signaling pathways?

**Tyrosinase**

Tyrosinase is an enzyme controlled by the initial actions of the hypothalamus. Tyrosinase is an important enzyme in mammalian melanin synthesis. The pigment is produced in two different cell types: the pigmented epithelial cell of the retina, and the melanocyte, a cell of neural-crest origin [9]. The peripheral organ that the hypothalamus influences physiologically is the skin. Consequently, if the hypothalamus is not working efficiently, then it is possible production of tyrosinase will be deficient, thus preventing the catalysis of tyrosine to melanin.

Tyrosinase is known to be involved in vitiligo via the TYR gene. And while studies have shown that impaired tyrosinase leads to ocular cutaneous albinism one asks what are the implications of this enzyme or lack thereof, which is present in melanocytes in people suffering from vitiligo [10].

One further hypothesizes, if tyrosine kinase, an important protein kinase involved in signal transduction and inflammatory response, is also impaired, there must also be a deficiency in the function of the hypothalamus. Thus one must do further research to understand the role of the hypothalamus, and its effect on tyrosinase production. According, to Schwahn et al., Melanocyte Stimulating Hormone (alpha-MSH) increases cytosolic levels of cAMP as well as tyrosinase activity in murine melanocytes [7]. Their results indicated that tyrosine levels can regulate the proliferative activity induced by alpha-MSH, as well as the extent of melanogenesis in normal human melanocytes. The significance of this work is that tyrosine levels may be part of the mechanism that switches melanocytes out of a proliferative status and into a melanin-synthesizing, terminally differentiated phenotype [11].

One must also consider MITF, or melanogenesis associated transcription factor, which contains an encoded protein that regulates melanocyte development and is responsible for pigment cell-specific transcription of the melanogenesis enzyme genes [12].

MITF is a transcription factor that activates the transcription of tyrosinase and Tyrosinase-Related Protein 1 (TYRPI1), an enzyme that is specifically expressed in melanocytes [13].

Albeit tyrosinase is not directly controlled by the hypothalamus and is regulated by MITF, hypothalamic influence on this enzyme allows for one to surmise a neurological theory in its involvement with vitiligo. Research shows mutations in the MITF at germ line will lead to syndromes with pigmentary defects. If we study MITF regulation, of the tyrosinase enzyme, which is influenced by hypothalamic control, in persons with vitiligo, we expect to see a neuroendocrine link, thus better helping us to understand the etiology of vitiligo.

Thus, the link for tyrosine and alpha-MSH is integral for vitiligo and understanding its etiology; as alpha-MSH is a hormone and

---

**Figure 3:** The image shows a melanocyte and the production of melanosomes [7].

**Figure 4:** Neurosecretory cells in the hypothalamus release hormones that travel through a portal system to the anterior lobe of the pituitary, where they either inhibit or encourage the release of a wide range of hormones from the pituitary, including Melanocyte Stimulating Hormone (MSH), which causes a dramatic darkening of skin by increasing the production of the dark pigment melanin in skins cells called melanocytes [8].
tyrosinase is an enzyme that plays an important role in melanogenesis (Figure 5) - a process, which begins in the brain, supporting the neuroendocrine theory for vitiligo etiology.

Discussion

Alpha-MSH and tyrosinase are significant in the melanogenesis process. While this hormone and enzyme, respectively are not the sole justification for vitiligo, it is important we study their neurological origins and how deficiencies in their function, can impact depigmentation in mammalian skin, in patients with vitiligo. Studying the regulation of tyrosinase, which is done by MITF, will also help us understand this enzyme’s role in impaired melanogenesis in vitiligo patients.

As research has shown us, mutations in the MITF at germ line will lead to syndromes with pigmented defects. Thus, there is a link between tyrosinase and pigmented defects a link that needs to be researched with respect to the pigmentary defects in the disease vitiligo.

While tyrosine kinase alone is not the sole pathway responsible for helping us understand depigmentation of skin in persons with vitiligo, by doing further research on how synergistically this pathway impacts impaired melanogenesis in vitiligo will only help bring clarity to the etiology of this disease.

Understanding the signaling pathways, hormones and enzymes behind melanogenesis will improve our understanding behind pigment loss disorders like vitiligo and Idiopathic Guttate Hypomelanosis (IGH), thus impacting current treatments of these conditions. In addition, how we perceive autoimmune disorders overall can be further evaluated and perhaps a more definite etiology can be discovered. This will impact how we treat autoimmune diseases and allow for improved and novel medications to aid in the quality of life of the patient, both physically and emotionally.

Although more research is needed on the neuroendocrine theory behind vitiligo, it is a possibility.

References

Journal of Anesthesia & Clinical Care
Journal of Addiction & Addictive Disorders
Advances in Microbiology Research
Advances in Industrial Biotechnology
Journal of Agronomy & Agricultural Science
Journal of AIDS Clinical Research & STDs
Journal of Alcoholism, Drug Abuse & Substance Dependence
Journal of Allergy Disorders & Therapy
Journal of Alternative, Complementary & Integrative Medicine
Journal of Alzheimer’s & Neurodegenerative Diseases
Journal of Angiology & Vascular Surgery
Journal of Animal Research & Veterinary Science
Archives of Zoological Studies
Archives of Urology
Journal of Atmospheric & Earth-Sciences
Journal of Aquaculture & Fisheries
Journal of Biotech Research & Biochemistry
Journal of Brain & Neuroscience Research
Journal of Cardiology & Neurocardiovascular Diseases
Journal of Cell Biology & Cell Metabolism
Journal of Clinical Dermatology & Therapy
Journal of Clinical Immunology & Immunotherapy
Journal of Clinical Studies & Medical Case Reports
Journal of Community Medicine & Public Health Care
Current Trends: Medical & Biological Engineering
Journal of Cytology & Tissue Biology
Journal of Dentistry: Oral Health & Cosmesis
Journal of Diabetes & Metabolic Disorders
Journal of Dairy Research & Technology
Journal of Emergency Medicine Trauma & Surgical Care
Journal of Environmental Science: Current Research
Journal of Food Science & Nutrition
Journal of Forensic, Legal & Investigative Sciences
Journal of Gastroenterology & Hepatology Research
Journal of Gerontology & Geriatric Medicine
Journal of Genetics & Genomic Sciences
Journal of Hematology, Blood Transfusion & Disorders
Journal of Human Endocrinology
Journal of Hospice & Palliative Medical Care
Journal of Internal Medicine & Primary Healthcare
Journal of Infectious & Non Infectious Diseases
Journal of Light & Laser: Current Trends
Journal of Modern Chemical Sciences
Journal of Medicine: Study & Research
Journal of Nanotechnology: Nanomedicine & Nanobiotechnology
Journal of Neonatology & Clinical Pediatrics
Journal of Nephrology & Renal Therapy
Journal of Non Invasive Vascular Investigation
Journal of Nuclear Medicine, Radiology & Radiation Therapy
Journal of Obesity & Weight Loss
Journal of Ophthalmology & Clinical Research
Journal of Orthopedic Research & Physiotherapy
Journal of Otolaryngology, Head & Neck Surgery
Journal of Plant Science: Current Research
Journal of Psychiatry, Depression & Anxiety
Journal of Pulmonary Medicine & Respiratory Research
Journal of Practical & Professional Nursing
Journal of Reproductive Medicine, Gynaecology & Obstetrics
Journal of Stem Cells Research, Development & Therapy
Journal of Surgery: Current Trends & Innovations
Journal of Toxicology: Current Research
Journal of Translational Science and Research
Trends in Anatomy & Physiology
Journal of Vaccines Research & Vaccination
Journal of Virology & Antivirals

Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php