Study of Echocardiographic Changes in Macroscopic Neonates

Zeinab M Mohy-Elddin¹, Ahmed E Ahmed², Heba M Qubiasi², Nagwan I Rashwan³ and Seham A Beshary³

¹Department of Pediatrics, Assiut University, Egypt
²Department of Pediatrics, South Valley University, Egypt

Abstract

Background: Macrosomia defined as birth-weight over 4,000 g irrespective of gestational age or greater than the 90th percentile for gestational age. Macrosomia affect 3-15% of all pregnancies. Macrosomia is associated with numerous perinatal and maternal complications.

Objectives: To assess the echocardiographic changes of macrosomic Infants of Diabetic Mothers (IDMs), macrosomic Infants of Non Diabetic Mothers (INDMs), and Average for Gestational Age infants (AGA).

Patients and methods: A cohort prospective case control clinical study includes 78 newborns admitted and attended the outpatient clinic of Neonatal Intensive Care Unit (NICU), Pediatric department, Qena University Hospital.

Results: Our study showed highly statistical significant difference in the mean of Interventricular Septum (IVS) in macrosomic IDMs and macrosomic INDMs (5.3±1.44 mm, 5±1.5 mm respectively) in comparison to control group (3.7±0.8 mm). Higher frequency of Asymmetrical Septal Hypertrophy (ASH) among macrosomic IDMs (51.9%) compared to other groups with statistically significant difference.

Conclusion: Asymmetrical septal hypertrophy was the commonest echocardiographic change found among IDMs, and HCM (Concentric Hypertrophy) was the commonest echocardiographic change found among INDMs. Both maternal diabetes (whatever its type) and macrosomia found to be risk factors for septal hypertrophy. Cases with asymmetrical septal hypertrophy due to maternal diabetes showed spontaneous improvement, while patients with concen-tric hypertrophy due to macrosomia of INDMs showed no reduction in septal or left ventricular posterior wall thickness.

Keywords: Echocardiographic measures; HA1C; Neonatal macrosomia; RBG; Risk factors

Introduction

The American College of Obstetricians and Gynecologists (ACOG) defined macrosomia as birth-weight over 4,000 g irrespective of gestational age or greater than the 90th percentile for gestational age [1]. Macrosomia affect 3-15% of all pregnancies [2]. Macrosomia is associated with numerous perinatal and maternal complications [3]. Gestational diabetes is the most important predictor of macrosomia births. The history of macrosomic births in the pregnancy period was also other predictors of such births [4]. Of course, maternal obesity, increasing age, and parity were also considered as the main risk factors for fetal macrosomia. When associated with diabetes, fetal macrosomia indicates poor maternal glucose control, and these infants are at risk of stillbirth [5].

The incidence of gestational diabetes is increasing worldwide, exposing large numbers of infants to hyperglycemia whilst in utero. This exposure may have a long-term negative impact on the cardiovascular health of the offspring. Variations exist in the reported prevalence rates of GDM within and between countries of the GCC with rates as low as 4.2% in Oman to as high as 24.9% in United Arab Emirates (UAE). Reported rates in other GCC countries are 16.3% in Qatar, 10.1% in Bahrain and 2.7% - 12.5% in Saudi Arabia [6]. The MENA region had the highest comparative prevalence of diabetes in the world in 2012, with four countries in the region among the top ten worldwide in terms of prevalence. The International Diabetes Federation (IDF) estimates that by 2030, patients with diabetes will double to current estimates of up to 59.9 million in the MENA region. Even though epidemiological studies document high diabetes prevalence in each country, there are specific regions within each country that have higher prevalence of diabetes than originally stated.

An elevated frequency of septal hypertrophy was found in IDMs. Septal hypertrophy suggests that diabetic mothers were not in good metabolic control, because it has been reported that careful glucose control during pregnancy reduces the incidence and severity of hypertrophic cardiomyopathy in the fetus but may still not prevent accelerated fetal cardiac growth [7]. Large Gestational Age (LGA) of INDMs also showed septal hypertrophy [8].
Patients and Methods

The study included 78 newborns admitted and attended the outpatient clinic of Neonatal Intensive Care Unit (NICU), Pediatric department, Qena University Hospital. Informed consent for participation in the study was obtained from the parent or legal guardian who accompanied the infant to the hospital. The exclusion criteria were: Infants with infectious, immunological, allergic, neoplastic, dysmorphic and antenatal (irradiation or drugs except for treatment of DM) were excluded from the study [6].

Infants were divided into three groups: group (A): compromised 28 macromomic Infants of Diabetic Mother (IDMs), group (B): 25 macromomic Infants of Non Diabetic Mothers (INDM), and group (C): 25 Average for Gestational Age infants (AGA). The mothers of group A: 14 had (type I) diabetes, 4 had (type II) and 10 had gestational diabetes mellitus. Of group A, 28 infants were macromomic according to their gestational ages [9]. We used birth weight greater than 4000 gm to define macrosomia in full term babies, as this is the most commonly proposed definition [1].

Data collection

A standardized questionnaire will be completed for all the infants including the following:

Maternal history includes:

- Maternal age and Parity
- Type of diabetes mellitus (type I, type II or gestational)
- Therapeutic history during pregnancy
- History of delivery of previous macromomic babies
- Type of delivery
- History of obstructed labor

Fetal history includes:

- Birth weight
- Gestational age
- History of respiratory distress or cyanosis
- History of pallor, plethora, petechiae
- History of congenital malformation

Laboratory methods

Random blood glucose: Random blood glucose was done for new-borns for assessment of fetal hypoglycemia (Serum or whole blood glucose levels of less than 40 mg/dL within the first 24 hours after birth).

HbA1c: HbA1c was done for diabetic mothers for assessment of diabetic control at late pregnancy, sub optimally controlled diabetic mothers (HbA1c≥7 mg/dL) [10].

Echocardiogram:

- Echocardiogram was performed by general electronics Vivid S5, 6 MHz phased array probe
- Cardiac measurements were determined by cross-sectional M-mode echocardiography performed in the first three days after birth. Appropriate transducers of 6 MHz were used to define cardiac structures. The echocardiograms were obtained in the standard precordial positions, The echocardiograms were obtained in the standard precordial positions, echocardiographic measurements including LVESe/D/VEDD (LVESe: Left Ventricular End-Systolic Diameter, VEDD: Left Ventricular End-Diastolic Diameter, IVS: Interventricular Septum thickness, PW: Posterior Wall thickness, IVS/PW: Interventricular Septum thickness to Posterior Wall thickness ratio, Ao: Aorta diameter, LA: Left Atrium diameter, FS%: Shortening Fraction, EF%: Ejection Fraction. All measurements were made at end-diastole in cm) for control group & macromomic infants of nondiabetic mothers & infants of diabetic mothers
- 2D for assessment of heart anatomy
- Pulsed and continuous waves dopplar for assessment of flow across the valves
- Color flow mapping was used for assessment of presence of shunt and its direction. All measurements were compared to measurement of Mung Park, 2008

Statistical analysis

Data will be analyzed using Statistical Package for Social Sciences (SPSS) software program (version 20). Qualitative variable will be recorded as frequencies and percentages and will be compared by chi-square test. Quantitative measure will be presented as means ± Standard Deviation (SD) and will be compared by student t-test. Regression analysis and correlation between different variable will be performed as indicated. p value<0.05 will be significant.

Results

The results of the study on macromonic neonates are shown in tables 1-8 and Figures 1,2.

<table>
<thead>
<tr>
<th>Control (n=25)</th>
<th>Group A IDM (n=28)</th>
<th>Group B INDM (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Maternal age (years) (mean±SD)</td>
<td>23.6±3.3</td>
<td>28.94±4.1</td>
</tr>
<tr>
<td>Type of DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Type II</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>GD</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Type of Drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Type of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>13</td>
<td>52.0</td>
</tr>
<tr>
<td>NVD</td>
<td>12</td>
<td>48.0</td>
</tr>
<tr>
<td>Parity (n) (mean±SD)</td>
<td>1.6±1</td>
<td>2.4±2</td>
</tr>
<tr>
<td>Similar condition of previous macromomic babies</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 1: Maternal demographic data of the included mother in the study.

Table 2: Neonatal data of the studied infants versus control group.
Infant need for resuscitation was significantly high among macrosomic babies in comparison to control group (p<0.05). As a sequence a significantly high percentage of macrosomic babies were admitted to NICU.

Table 3: Anthropometric measurements and vital data of the studied infants versus control group.
There was a significantly high mean values of each of birth weight, head circumference, respiratory rate, heart rate, systolic and diastolic blood pressure in macrosomic IDM in comparison to control group (p<0.001, p<0.001, p<0.001, and p<0.001 respectively). Also a significantly high mean values of each of length and body temperature in macrosomic infants of nondiabetic mothers in comparison to control group (p=0.001 and p<0.05 respectively).

Table 4: Clinical data of the studied infants versus control group.
The percentage frequency of each of hypoglycemia, TTN, plethoric, cyanosis were significantly high among macrosomic infants of diabetic mothers (p=0.001, p<0.05, p<0.001, and p<0.001 respectively). As a sequence a significantly high percentage of macrosomic IDM were admitted to NICU admission.

Table 5: Relative frequency of the Congenital Heart Disease (CHD) of the studied infants.
No statistically significant difference regarding the frequency of occurrence or the type of the defect among the three groups.

Table 6: Echocardiographic changes in macrosomic Infants of Diabetic Mothers (IDMs) (group A) versus control group.
There were significantly high mean values of each of IVS, LVEWd, and Ratio (IVS/LVPWD) in comparison to other groups (p=0.001 and p<0.05 respectively). Also a significantly high mean values of LS in comparison to other groups (p=0.001 and p<0.05 respectively).

Table 7: Relative frequency of the Asymmetrical Septal Hypertrophy (ASH) of the studied infants.
Relative frequency of the (ASH) of infants study. The percentage frequency of the Asymmetrical Septal Hypertrophy (ASH) among macrosomic IDM was significantly high in comparison to other groups (p<0.05).
Table 8: Echocardiographic changes in macrosomic infants of non diabetic mother (group B) versus control group. A significantly high mean values of each of IVS, and AAO of macrosomic INDM in comparison to control group (p<0.001).

<table>
<thead>
<tr>
<th>Echocardiographic Measures</th>
<th>Control (n=25)</th>
<th>Group B INDM (n=25)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS (mm)</td>
<td>3.7±0.8</td>
<td>5±1.5</td>
<td>~0.001**</td>
</tr>
<tr>
<td>LVEDd (mm)</td>
<td>16.8±2.1</td>
<td>17.8±1.7</td>
<td>NS</td>
</tr>
<tr>
<td>LVESe (mm)</td>
<td>10.2±1.8</td>
<td>11.1±1.4</td>
<td>NS</td>
</tr>
<tr>
<td>LVFPd (mm)</td>
<td>5±0.5</td>
<td>3.4±0.9</td>
<td>NS</td>
</tr>
<tr>
<td>RV (mm)</td>
<td>10.1±2.8</td>
<td>10.4±2.8</td>
<td>NS</td>
</tr>
<tr>
<td>FS%</td>
<td>40.2±4.8</td>
<td>38.2±4.5</td>
<td>NS</td>
</tr>
<tr>
<td>PA (mm)</td>
<td>9.5±2.3</td>
<td>10±1.2</td>
<td>NS</td>
</tr>
<tr>
<td>LA (mm)</td>
<td>13.1±2.8</td>
<td>13.7±2.2</td>
<td>NS</td>
</tr>
<tr>
<td>AAO (mm)</td>
<td>9.5±1</td>
<td>10.9±1.4</td>
<td>~0.001**</td>
</tr>
<tr>
<td>AAO flow (cm/sec)</td>
<td>91.5±23</td>
<td>91.9±14.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

Figure 2: Correlation between Interventricular Septum thickness (IVS) and HAIc in macrosomic IDM (group A).

There was statistically significant positive correlation with (r=0.391) (p<0.05) between IVS and HAIc in macrosomic infants of diabetic mother (group A).

Discussion

The present study (Table 1), showed increased mean maternal age in macrosomic (IDMs) group and in macrosomic of (INDMs) group 28.94±4.1 years old and 27.6±4.3 years respectively than control group (AGA) 23.6±3.3 years, this was in agreement with Blooming (2012) who reported that old women are more likely to have a baby diagnosed with fetal macrosomia [11]. As regard type of delivery it was found that the frequency of cesarean section in macrosomic IDMs and macrosomic INDMs is higher than control group (AGA), this was in agreement with Mathew et al., who reported that macrosomic births increased the section deliveries [4]. Also it was found that history of similar condition of previous macrosomic births increase risk of having another baby who has macrosomia, this was in agreement with Mathew et al., who reported that history of macrosomic births were determined as the main predictor of macrosomia following gestational diabetes [4]. As regard type of drug it was found 89% of the diabetic mothers were treated by insulin, this was in agreement with Vela-Huerta et al., who reported that 90.9% of diabetic mothers were treated by insulin [12].

In present study (Table 2), it was found that high frequency of Infants of Diabetic Mothers (IDMs) that needed resuscitation 15 infants (53%), and the frequency of macrosomic of INDMs were found 12 infants (48%), this was in agreement with Ikeda et al., who reported that Infants of Diabetic Mothers (IDMs) are at an increased risk of respiratory distress, and operative delivery due to macrosomia also increases the risk for Transient Tachypnoea of the Newborn (TTN) [13]. Our study showed that macrosomic Infants of Diabetic Mothers (IDMs) exhibits higher NICU admissions (Table 2), this was in agreement with Vela-Huerta et al., who reported that Infants of Diabetic Mothers (IDMs) mainly having congenital anomalies, heart disease, significant respiratory illness, or hypoglycemia need for NICU for continued care and access to subspecialists [14].

In the present study (Table 3), it was found that macrosomic Infants of Diabetic Mothers (IDMs) and (INDMs) group showed significant difference regarding weight, length, and head circumference, this was in agreement with Ng SK et al., who reported that there was a significant difference between macrosomnic and normal newborns regarding weight, height, and head size, and in disagreement with Krishnaneni et al., who reported that a basic anthropometric indexes did not differ between the LGA and AGA groups with the exception of head circumference [1,15]. Regarding blood pressure macrosomic infants of diabetic mother exhibited higher systolic and diastolic blood pressure, this was in agreement with Patel et al., who reported that offspring of diabetic women have been shown to have higher systolic and diastolic blood pressure than those born to non diabetic women [16]. Respiratory rate and heart rate were found to be higher in Infants of Diabetic Mothers (IDMs), this was in agreement with Vela-Huerta et al., who reported that Infants of Diabetic Mothers (IDMs) mainly having congenital anomalies, heart disease and significant respiratory illness [14].

In present study (Table 4), it was found that 21 infants of macrosomic Infants of Diabetic Mothers (IDMs) (75%) presented with neonatal hypoglycemia in first few hours after birth (1/2 h-1 h-2 h), 12 infants were corrected by administration of glucose and oral feeding as early as possible, and 9 infants presented with severe hypoglycemia that require NICU admission for IV administration of glucose (bolus dose 2 mL/kg of glucose 10% followed by a continuous infusion of glucose 10% at an infusion rate of 6-8 mg/kg/min), this was in agreement with Vela-Huerta et al., showed that hypoglycemia was found in (72.7%) in IDMs, and in agreement with Mäkelä et al., who reported that hypoglycemia is common presentation in IDMs, caused by hyperinsulinemia due to hyperplasia of fetal pancreatic beta cells consequent to maternal-fetal hyperglycemia [12,17]. Our study showed that high frequency of plethoric babies 28% among macrosomic IDMs, this was in agreement with Cetin et al., who...
Conflict of interest

All authors declare that they have not received any support from any organization for the submitted work. No financial relationships with any organizations that might have an interest in the submitted work and no other relationships or activities that could appear to have influenced the submitted work.

References

Journal of Anesthesia & Clinical Care
Journal of Addiction & Addictive Disorders
Advances in Microbiology Research
Advances in Industrial Biotechnology
Journal of Agronomy & Agricultural Science
Journal of AIDS Clinical Research & STDs
Journal of Alcoholism, Drug Abuse & Substance Dependence
Journal of Allergy Disorders & Therapy
Journal of Alternative, Complementary & Integrative Medicine
Journal of Alzheimer’s & Neurodegenerative Diseases
Journal of Angiology & Vascular Surgery
Journal of Animal Research & Veterinary Science
Archives of Zoological Studies
Archives of Urology
Journal of Atmospheric & Earth-Sciences
Journal of Aquaculture & Fisheries
Journal of Biotech Research & Biochemistry
Journal of Brain & Neuroscience Research
Journal of Cancer Biology & Treatment
Journal of Cardiology & Neurocardiovascular Diseases
Journal of Cell Biology & Cell Metabolism
Journal of Clinical Dermatology & Therapy
Journal of Clinical Immunology & Immunotherapy
Journal of Clinical Studies & Medical Case Reports
Journal of Community Medicine & Public Health Care
Current Trends: Medical & Biological Engineering
Journal of Cytology & Tissue Biology
Journal of Dentistry: Oral Health & Cosmesis
Journal of Diabetes & Metabolic Disorders
Journal of Dairy Research & Technology
Journal of Emergency Medicine Trauma & Surgical Care
Journal of Environmental Science: Current Research
Journal of Food Science & Nutrition
Journal of Forensic, Legal & Investigative Sciences
Journal of Gastroenterology & Hepatology Research
Journal of Gerontology & Geriatric Medicine
Journal of Genetics & Genomic Sciences
Journal of Hematology, Blood Transfusion & Disorders
Journal of Human Endocrinology
Journal of Hospice & Palliative Medical Care
Journal of Internal Medicine & Primary Healthcare
Journal of Infectious & Non Infectious Diseases
Journal of Light & Laser: Current Trends
Journal of Modern Chemical Sciences
Journal of Medicine: Study & Research
Journal of Nanotechnology: Nanomedicine & Nanobiotechnology
Journal of Neonatology & Clinical Pediatrics
Journal of Nephrology & Renal Therapy
Journal of Non Invasive Vascular Investigation
Journal of Nuclear Medicine, Radiology & Radiation Therapy
Journal of Obesity & Weight Loss
Journal of Ophthalmology & Clinical Research
Journal of Orthopedic Research & Physiotherapy
Journal of Otolaryngology, Head & Neck Surgery
Journal of Pathology Clinical & Medical Research
Journal of Pharmacology, Pharmaceutics & Pharmacovigilance
Journal of Physical Medicine, Rehabilitation & Disabilities
Journal of Plant Science: Current Research
Journal of Psychiatry, Depression & Anxiety
Journal of Pulmonary Medicine & Respiratory Research
Journal of Practical & Professional Nursing
Journal of Reproductive Medicine, Gynaecology & Obstetrics
Journal of Stem Cells Research, Development & Therapy
Journal of Surgery: Current Trends & Innovations
Journal of Toxicology: Current Research
Journal of Translational Science and Research
Trends in Anatomy & Physiology
Journal of Vaccines Research & Vaccination
Journal of Virology & Antivirals

Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php