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Abbreviations
AEC: Alveolar Epithelial Cell; AFC: Alveolar Fluid Clearance;  
ALI: Acute Lung Injury; AMPK: Adenosine Monophosphate-activated  
Protein Kinase; AP-2: Adaptor Protein-2; ARDS: Acute Respiratory  
Distress Syndrome; AT I cell: Alveolar Type I cell; AT II cell:  
Alveolar Type II cell; ATP: Adenosine Triphosphate; cAMP: cyclic  
AMP; CFTR: Cystic Fibrosis Transmembrane conductance  
Regulator; cldn: Claudin; Cl-: Chlorine; CNG cation channel:  
Cyclic Nucleotide-Gated cation channel; CRAC channel: Calcium  
Release-Activated Calcium channel; DEX: dexamethasone; ENaC:  
Epithelial Sodium Channel; FDLE cell: Foetal Distal Lung Epithelial 
Cell; GC: Glucocorticoid; GR: GC Receptor; HSC: Highly Selective 
Cation channel; iNOS: inducible NO Synthase; mROS: mitochondrial  
Reactive Oxygen Species; NO: Nitric Oxide; Na+: Sodium; Na+,  
K+-ATPase: Sodium-Potassium Adenosine Triphosphatase; NSC: 
Nonselective Cation channel; PLC: Phospholipase C; PKCζ: Protein 
Kinase C; PKA: Protein Kinase A; RNS: Reactive Nitrogen Species; 
ROS: Reactive Oxygen Species; SGK1: Serum and Glucocorticoid-in-
ducible Kinase 1; TJ: Tight Junction; TNF-α: Tumour Necrosis 
Factor-α; ZO-1: Zonula Occludens-1; ZO-2: Zonula Occludens-2; 
α-ENaC: ENaC α-subunit; α1-Na+, K+-ATPase: α1-isoform of Na+, 
K+-ATPase; β2AR: β2-Adrenergic Receptor

Introduction
 ALI and ARDS are life-threatening diseases and remain a  
significant burden of morbidity and mortality. In the early stages,  
ALI/ARDS is pathologically characterised by pulmonary oedema  
results from increased vascular permeability. A higher survival rate 
for patients with ALI/ARDS is related to maximal AFC, but the  
majority of patients have impaired AFC [1]. In ALI/ARDS, impaired 
AFC is mainly due to the down regulation of active sodium (Na+) 
transport. In the pulmonary alveoli, the regulation of the fluid balance  
depends on the active transport of Na+, via osmotically driven  
water movement across the alveolar epithelium. In vivo, this active 
Na+ transport supports the foetal and adult reabsorption of alveolar  
fluid, especially when alveolar permeability to plasma proteins is  
increased [2]. In Alveolar Epithelial Cells (AEC), the major  
functional proteins that contribute to Na+ transport involve apical 
ENaC and basolateral Na+, K+-ATPase in the plasma membrane. 
During ALI/ARDS, changes in oxygen, RNS and ROS, and TNF-α 
levels result in ENaC and Na+, K+-ATPase dysfunction, leading to  
decreased alveolar Na+ and fluid transport. However, the mechanisms 
from this down regulation are not completely understood. The recent 
advances on this topic are reviewed here.

Alveolar sodium and fluid transport
 Alveolar fluid transport is regulated by the transport of ions, such 
as Na+ and Cl-, across the alveolar epithelium. This epithelium is  
composed of squamous Alveolar Type I (AT I) and cuboidal Alveolar 
Type II (AT II) cells, which line >95% and <5% of the alveolar surface 
area, respectively [3]. The previous paradigm was that Na+ and Cl¯ are 
mainly transported by AT II cells. As less is known about AT I cells, 
they were thought to form only a passive barrier for water movement 
[3,4]. However, the current paradigm is that AT I cells also have a  
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Abstract
 Acute Lung Injury (ALI) and Acute Respiratory Distress  
Syndrome (ARDS) are characterised by pulmonary oedema results 
from increased vascular permeability. The resolution of pulmonary 
oedema and ALI depends upon intact Alveolar Fluid Clearance 
(AFC). Sodium transport Across Alveolar Epithelial Cells (AECs) 
leads to osmotic alveolar water transport and plays a dominant role 
in AFC. Sodium transports via apical sodium channels, mainly the  
Epithelial Sodium Channel (ENaC) and basolateral  
Sodium-Potassium Adenosine Triphosphatase (Na+, K+-ATPase) 
in the AEC membrane. In ALI/ARDS, the imbalance of oxygen,  
Reactive Nitrogen and Oxygen Species (RNS and ROS,  
respectively), and Tumour Necrosis Factor-α (TNF-α) lead to a  
decrease in AFC, due in part to the down regulation of ENaC and 
Na+, K+-ATPase in the alveolar epithelium.
 In ALI, hypoxia inhibits ENaC and Na+, K+-ATPase activity 
through different mechanisms. The definite mechanism of ENaC 
and Na+, K+-ATPase activity regulation by RNS and ROS is unclear.  
TNF-α, and its lectin-like domain (designated TIP) differentially  
impact sodium transport across the alveolar epithelium.
 In this review, we will discuss the regulatory mechanisms of  
alveolar sodium transport and AFC for the development of effective 
therapeutic strategies for ALI/ARDS patients.
Keywords: Epithelial sodium channel; Hypoxia, Reactive nitrogen 
species; Reactive oxygen species; Sodium-Potassium adenosine 
triphosphatase; Tumour necrosis factor-α

Guangyuan Gao1, Chunling Dong2, Mingzhen Yuan1, Hui Liu1 
and Bo Li1*

1Department of Human Anatomy, College of Basic Medical Sciences, Jilin 
University, Changchun, China

2Department of Respiratory Medicine, Second Hospital, Jilin University, 
Changchun, China

Sodium Transport and Alveolar 
Fluid Clearance in Acute Lung 
Injury

app:lj:%E6%B0%A7%E5%90%AB%E9%87%8F?ljtype=blng&ljblngcont=0&ljtran=oxygen%20content
http://doi.org/10.24966/CTB-9107/100003


Citation: Gao G, Dong C, Yuan M, Liu H, Li B (2014) Sodium Transport and Alveolar Fluid Clearance in Acute Lung Injury. J Cytol Tissue Biol 1: 003.

• Page 2 of 9 •

J Cytol Tissue Biol ISSN: 2378-9107, Open Access Journal
DOI: 10.24966/CTB-9107/100003

Volume 1 • 100003

full complement of ion channels (Figure 1), including the ENaC, 
Cyclic Nucleotide-Gated (CNG) cation channel and Cystic Fibrosis 
Transmembrane Conductance Regulator (CFTR), and take part in 
active ion transport [3,4]. Because AT I cells line most of the surface 
area in alveoli, they may have a significant potential in alveolar Na+ 

transport and fluid balance. Expression of ENaC and Na+, K+-ATPase, 
the main active Na+ transporters, were identified in both AT I and AT 
II cells in vitro and in situ [5] and contribute to alveolar transepithelial 
Na+ transport and AFC.

 The alveolar epithelium is composed of squamous Alveolar 
Type I (AT I) and cuboidal Alveolar Type II (AT II) cells. Both AT 
I and AT II cells contain two forms of amiloride-sensitive epithelial  
sodium channels, including the Highly Selective Cation channel 
(HSC) and Nonselective Cation channel (NSC) as well as the Cyclic 
Nucleotide-Gated (CNG) cation channel and sodium-potassium  
adenosine triphosphatase (Na+, K+-ATPase), which are involved in  
alveolar transepithelial sodium transport. In addition, AT I cells have 
aquaporin 5, which contributes to either water or gas exchange. AT II 
cells have the Cystic Fibrosis Transmembrane conductance Regulator  
(CFTR) and Chlorine (Cl¯) channels, members of the CLC family 
of proteins, which mediate apical Cl¯ transport. The tight junctions  
(a chain in grey between Alveolar Epithelial Cells (AECs)) and  
adherens junctions (in red between AECs) between adjacent  
alveolar epithelial cells provide a physical barrier from paracellular 
solute transport [4,6,7].

 Intercellular junctions between adjacent alveolar epithelial cells, 
such as Tight Junctions (TJs) and adherens junctions, provide a  
physical barrier for paracellular solute transport. TJ plays a more  
notable role in regulating paracellular solute transport. The proteins  
that compose the core TJ protein complex, including tetraspan  
transmembrane Claudin (cldn), occludin, and cytoplasmic scaffold 
proteins Zonula Occludens-1 (ZO-1) and ZO-2 [8], intersect one  
another in a coordinated manner and create junctional proteins 
strands, which surround the cells like a ring and divide the epithelium  
into apical and basolateral surfaces. Other proteins, such as  
cytoskeletal protein actin, are also known components of the TJ. 
Of these TJ proteins, recent studies have focused more on the cldn 
family because TJ regulation of paracellular ion transport is directly  
mediated by the cldn family, which includes nearly two dozen cldns 
[8]. The distribution of cldns is tissue-specific. In AECs (Figure 2),  
cldn-18.1 is abundantly expressed by AT I cells, cldn-3 is  
predominantly expressed by AT II cells, and cldn-4 is  
subdominantly expressed by AT I and AT II cells [9]. The function of  

these three claudins in the alveolar epithelium, especially cldn-3 
and cldn-18.1, has not been fully explored. Cldn-4 is specifically  
upregulated in ALI [10] and increased cldn-4 expression may related  
to the resolution of pulmonary oedema [9]. Elevated cldn-4  
expression can increase alveolar epithelial transepithelial electrical  
resistance in primary rat AECs [10], while inhibiting cldn-4 function  
has been shown to lead to decreased transepithelial electrical  
resistance and air space fluid clearance, thus impacting paracellular  
transport, AFC and sensitivity to pulmonary oedema in a  
ventilator-induced lung injury model [11]. Changes in cldn-18  
expression in ALI also can be seen. However, the regulation of 
cldn-4 and cldn-18 is in opposite directions. In experimental  
bleomycin-induced lung injury, the level of mRNAs encoding tight 
junction proteins, especially claudin-18, were demonstrated to be 
down regulated [12]. In addition, increased cldn-3 expression was 
also shown to decrease paracellular permeability, which was evaluated 
by transepithelial electrical resistance and dye flux measurements, but 
cldn-3 regulation in ALI is still not clearly understood.

 Pulmonary oedema reabsorption depends on active Na+ transport 
across the alveolar epithelium [13,14]. Primary Na+ transport via the  
apical surface of AEC, mainly through ENaC and an  
amiloride-insensitive pathway, and is subsequently pumped out by 
Na+, K+-ATPase from the basolateral surface into the lung interstitium 
to form the transepithelial osmotic gradient. This osmotic gradient 
drives water movement from the alveolar spaces into the alveolar  
interstitium [13,14].

 Sodium reabsorption mediated by ENaC can be inhibited by  
amiloride, a pyrazine compound. Single-channel studies have shown 
that at least two forms of amiloride-sensitive ENaC are present in the 
apical membrane of AT I, AT II (Figure 1) and Foetal Distal Lung  
Epithelial (FDLE) cells [2,4,6] : the highly selective cation channel 
(HSC) and Nonselective Cation channel (NSC). These two channels 
differ in selectivity for Na+ over K+ (HSC with a Na+/K+ selectivity 
>40; NSC with a Na+/K+ selectivity of ~1.4), unitary conductance  
(HSC=4-6 pS and NSC=19-24 pS) and other biophysical  
characteristics [6].

 ENaC is composed of three homologous subunits: α, β, and γ 
[15], but the total number of subunits for functional channels are  
uncertain and vary from four (two α-, one β-, and one γ-subunit)  

Figure 1: Schematic diagram of the distal pulmonary epithelium.

Figure 2: Claudin mRNA expression profiles for Alveolar Type I (AT I) and 
Alveolar Type II (AT II) cells.

Claudins-3, -4, and -18 are the primary claudins expressed in freshly  
isolated AT I and AT II cells (fluorescence-activated, cell-sorted). Cldn-18.1 is 
the major transcript in AT I cells, while cldn-3 is predominantly expressed by 
AT II cells. Both cell types express cldn-4. [9].
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subunits assembled as a tetramer to nine (three α-, three β-, and three 
γ-) subunits to create a much larger complex [16]. Edith Hummler 
and colleagues [17] observed that transgenic neonate mice without 
the ENaC α-subunit (α-ENaC) die immediately after birth due to  
impaired lung fluid clearance. Nadia Randrianarison and colleagues 
[18] have reported that disrupting the β-ENaC gene locus in mature  
mice lead to low expression levels of β-ENaC mRNA and a  
compensatory increase in α-ENaC and γ-ENaC protein expression, 
and yet a moderate impairment in baseline AFC was seen. Moreover,  
sufficient expression of β-ENaC may be essential to β2-agonist  
stimulation of AFC. Pierre M. Barker and colleagues [19] discovered  
that newborn mice without γ-ENaC had a decreased lung liquid  
clearance rate. These data indicate that the three ENaC subunits are all 
indispensable for maximal AFC.

 The phenomenon that part of lung liquid resorption could not be 
inhibited by amiloride was discovered in the lungs of several species 
including sheep, rabbits, guinea pigs, rats, and humans [16]. As liquid 
resorption follows the transepithelial osmotic gradient produced by 
active Na+ transport, there might be an amiloride-insensitive pathway 
for Na+ transport across the alveolar epithelium. Subsequent studies  
have indicated that the amiloride-insensitive channel may be a  
member of CNG cation channel family. CNG cation channels are gated 
by cAMP or cGMP but not voltage [20,21]. The amiloride-insensitive 
fraction of Na+ transport-dependent AFC may be partially mediated 
by CNG cation channels [14]. Ion channels that are directly activated  
by cyclic nucleotides were first found in the plasma membrane of  
retinal photoreceptors [21], and now CNG channels have been  
discovered not only in photoreceptors and olfactory sensory neurons 
but also in other neurons and non-neuronal tissues, including airway 
epithelial cells and endothelial cells of the pulmonary artery [22]. 
CNG cation channels are functionally expressed in adult AT II cells 
[7], and one of the CNG cation channel isoforms CNGA1 is mainly  
expressed in rat AT I cells [20]. Activating CNG cation channels 
with a cGMP analogue, 8Br-cGMP (100 μM), resulted in activated  
whole-cell cation conductance in isolated rat AT II cells and increased 
lung liquid clearance in situ. Both effects were still apparent in the 
presence of amiloride [7,20]. Thus, CNG cation channels are activated  
by cGMP and may contribute to at least part of the  
amiloride-insensitive fraction of lung liquid clearance. Although less 
is known about AFC mediated by CNG cation channels, the potential 
role of CNG cation channels in lung liquid clearance is worth studying 
for novel therapeutic strategies for pulmonary oedema.

 Na+, K+-ATPase is essential to transepithelial active Na+ transport 
and exists in the basolateral cell membrane. Na+, K+-ATPase pumps 
three sodium ions out of the cell and exchanges two potassium ions 
into the cell [23]. This process consumes 20-30% of Adenosine Tri 
Phosphate (ATP) at rest to form Na+ and K+ gradients across the cell  
membrane [24]. The Na+ and K+ gradients are essential for  
maintaining membrane potentials, cell volume and the active  
transport of other solutes [24]. Four isoforms of the α-subunit and 
five isoforms of the β-subunit of Na+, K+-ATPase have been identified 
[13]. The minimal functional Na+, K+-ATPase is a heterodimer of a 
single α- and β-subunit. The α-subunit hydrolyses ATP and provides 
binding sites for cations. The β-subunit is necessary for the stability 
and trafficking of this combination [23]. The α1-, α2-, β1-isoform of 
Na+, K+-ATPase (α1-, α2-, β1-Na+, K+-ATPase) has been discovered in 
lung epithelial cells [25]. Additionally, α1-Na+, K+-ATPase has been  
reported to be expressed by AT II cells, α1- and α2-Na+, K+-ATPase can 
be found on AT I cells [26]. Moreover, α2-Na+, K+-ATPase in AT I cells  

mediates most of the active Na+ transport and basal lung liquid  
reabsorption seen in isolated, ouabain-perfused rat lungs [26]. The  
activity of α1- or α2-Na+, K+-ATPase in these isolated lungs can be 
selectively inhibited by ouabain at a specific concentration, and 
the selective inhibitions were used to determine the differential  
contribution of α1- or α2-Na+, K+-ATPase to AFC ouabain ouabain 
[26]. In transgenic mice, a 50% decrease in protein expression of  
either α1- or α2 -Na+, K+-ATPase does not affect basal or stimulated 
AFC, while a 50% protein loss in both α1 and α2 -Na+, K+-ATPase  
produces a submaximal cAMP-stimulated AFC without affecting  
basal AFC [27]. These results indicate that α1- and α2-Na+, K+-ATPase 
regulate cAMP-stimulated AFC in a coordinated manner.

Regulation of alveolar sodium and fluid transport during 
ALI

 Alveolar fluid secretion and reabsorption are precisely balanced by 
several regulatory mechanisms, including active Na+ transport. During 
ALI/ARDS, a variety of agents or changes, including hypoxia, RNS 
and ROS, and TNF-α, influence the activity or expression of ENaC 
and Na+, K+-ATPase, alveolar Na+ transport and AFC. In addition, 
an influenza viral infection has been reported to be able to influence 
lung liquid clearance. The influenza virus strain A/PR/8/34 reduced 
the open probability of single ENaC channels in apical cell-attached 
patches and rapidly inhibited amiloride-sensitive lung fluid transport  
in vivo. As inhibitors of Phospholipase C (PLC) and cytosolic  
tyrosine kinase Src could block the inhibition of ENaC by the  
influenza virus, this inhibition might be mediated via PLC-induced 
activation of PKC [28]. We focused on the secondary changes in 
the course of ALI, which play a regulatory role in alveolar Na+ fluid  
transport. The detailed mechanisms involved in these effects are  
described below.

Effects of hypoxia on alveolar sodium and fluid transport 
during ALI

 The amount of alveolar fluid affects the thin liquid layer lining the 
alveolar epithelium and thus influences gas exchange. Patients with 
ALI/ARDS clinically manifest with hypoxaemia, due to increased  
oedema and inflammatory cellular infiltrates in the lungs. Meanwhile,  
alveolar hypoxia leads to decreased sodium-dependent oedema  
clearance, at least in part, by reducing the activity of  
amiloride-sensitive ENaC and Na+, K+-ATPase in the plasma  
membrane.

 In hypoxic rat AT II cells, hypoxia reduces the transepithelial Na+ 
current and activity of the amiloride-sensitive Na+ channel, which is 
related to the hypoxia-induced decrease (quantified by biotinylation)  
in ENaC subunits, especially the β- and γ-subunits, in the apical  
membrane, but hypoxia does not decrease mRNA or protein  
expression of the ENaC subunits [29]. The β2-agonist terbutaline  
reverses the hypoxia-induced down regulation of transepithelial 
Na+ transport by stimulating Na+ channel activity and increasing the  
insertion of ENaC subunits into the membrane of hypoxic 
AECs via cAMP stimulation [29]. In summary, hypoxia inhibits  
amiloride-sensitive Na+ channel activity by decreasing the apical  
expression of ENaC subunits, and this inhibition can be reversed by a 
β2-agonist. More importantly, terbutaline increases Na+, Cl¯ transport  
in AT II cells during normoxia and hypoxia [30]. However, in  
isolated rat AT II cells, hypoxia impairs β2-Adrenergic Receptor 
(β2AR) signalling. Although hypoxia decreases terbutaline-stimulated 
cAMP production and β2AR density, the potency of terbutaline and  
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affinity between terbutaline and β2AR are not impacted, and the  
decrease in cyclic AMP (cAMP) production can be reversed by  
reoxygenation [31]. β2AR belongs to a family of G protein-coupled 
receptors, and the hypoxia-induced downregulation results from 
increased Gi/o activity [31]. Subsequent research has indicated that 
prolonged hypoxia impairs β2AR signalling in alveolar epithelia and 
whole lungs, but this impairment is no longer aggravated [32]. In  
addition, alveolar sodium transport under hypoxic conditions can be 
ameliorated by Dexamethasone (DEX) [33,34].

 Cells react to hypoxia through adaptive mechanisms by  
increasing the expression of genes involved in angiogenesis and  
glycolytic pathways and maintaining cell ATP homeostasis [35]. 
As ALI/ARDS is clinically characterised by the abrupt onset of  
hypoxaemia, about half of patients with ALI/ARDS have died or 
have given up treatment in 7-10 days [36]. Decreasing the processes  
that consume ATP, such as Na+, K+-ATPase, is more important for  
compensation. The exposure of AECs to hypoxia leads to a  
time-dependent decrease in Na+, K+-ATPase activity via its  
endocytosis from the plasma membrane into intracellular  
compartments. Therefore, the amount of α1-Na+, K+-ATPase in 
the basal cell membrane is decreased, but the total abundance of  
cellular protein is not [37]. Hypoxia increases the mitochondrial  
Reactive Oxygen Species (mROS) levels via a capable electron  
transport chain. Mitochondrial DNA-deficient (ρ0) A549 cells in the 
absence of the cytochrome oxidase subunit II could not generate  
hypoxia-induced mROS production and Na+, K+-ATPase endocytosis 
and decreased Na+, K+-ATPase activity [37]. Meanwhile, antioxidants  
can inhibit this hypoxia-induced enhancement of mROS and  
downregulation of Na+, K+-ATPase [37]. Therefore, these results  
suggest that the endocytosis of Na+, K+-ATPase during hypoxia is  
mediated by mROS.

 In rat AECs, hypoxia-generated mROS leads to the  
phosphorylation/activation of Adenosine Monophosphate-activated  
Protein Kinase (AMPK) at the Thr172 residue. The activated AMPK 
α subunit binds and directly phosphorylates Protein Kinase C (PKCζ) 
at the Thr410 within the PKCζ activation loop [38]. Moreover,  
phosphorylation of PKCζ at the Thr410 is required for the  
hypoxia-induced Na+, K+-ATPase endocytosis. Small interfering RNA 
knockdown of AMPK α1 but not α2 suggests that PKCζ is specifically 
activated by AMPK α1 isoform [38]. Activated PKCζ in turn mediates 
the phosphorylation of Na+, K+-ATPase at Ser18 in the α1-subunit 
and Na+, K+-ATPase endocytosis but without significant changes in 
total cell protein abundance [37]. Meanwhile, mROS increases the  
degradation of Na+, K+-ATPase, which is mediated by the  
ubiquitin-conjugating system [39]. The connection between 
the endocytosis and ubiquitination of Na+, K+-ATPase has been  
described. During hypoxia, ubiquitination of α1-Na+, K+-ATPase has 
been discovered at the basolateral membrane of AEC and plays an 
important role in the endocytosis of Na+, K+-ATPase [40]. Both the 
endocytosis and ubiquitination of α1-Na+, K+-ATPase are prevented 
when the Ser18 residue in the N-terminus of the α1-subunit (PKCζ 
phosphorylation motif) is mutated to alanine, suggesting that Ser18 
phosphorylation is necessary for these two processes [40]. In addition, 
mutation of the four lysine residues (K16, K17, K19, K20) adjacent 
to Ser18 to arginine inhibits the endocytosis and ubiquitination of  
Na+, K+-ATPase during hypoxia [40]. In conclusion (Figure 3),  
exposure of AECs to hypoxia leads to AMPK α1 activation by mROS, 
leading to direct PKCζ phosphorylation at Thr410. Activated PKCζ 
phosphorylates Na+,K+-ATPase at Ser18 in the α1 subunit, which  

causes ubiquitination at the sequence KKSKK [four lysine residues 
(K16, K17, K19, K20) surrounding Ser 18] of α1-Na+, K+-ATPase, 
leading Na+, K+-ATPase endocytosis. Subsequently, further studies 
on hypoxia-generated downregulation of Na+, K+-ATPase activity  
were performed. During hypoxia, mROS also leads to calcium  
entry through Calcium Release-Activated Calcium (CRAC) channels, 
which transport stores-operated calcium to replenish endoplasmic 
reticulum Ca2+ stores in nonexcitable cells [41]. This calcium entry  
induces Na+, K+-ATPase endocytosis and the phosphorylation/ 
activation of AMPK via Calmodulin-dependent kinase β (CaMKKβ) 
[41]. Moreover, hypoxia-induced impairment of AFC is prevented 
when CRAC channel function is inhibited [41]. Thus, during hypoxia,  
the calcium entry via CRAC channels induces CaMKKβ/AMPK  
activation and Na+, K+-ATPase endocytosis. Additionally, mROS has 
been shown to possibly play an upstream role in calcium signalling;  
thus, the calcium flux mediated by CRAC channels may be an  
intermediary process between mROS-induced AMPK α1 activation 
and CaMKKβ/AMPK activation. Moreover, in H441 human airway 
epithelial cells, AMPK activation with the AMP mimetic AICAR 
leads to the inhibition of amiloride-sensitive HSC and NSC, which is  
associated with a decreased channel open probability [42]. Recent  
research has shown that hypoxia also activates an  
AMPK-independent pathway in H441 cells, modification of AMPK 
avtivity by Lentiviral prevented the effect of hypoxia on Na+,  
K+-ATPase but not apical amiloride-sensitive Na+ conductance, which 
different from the regulation of Na+, K+-ATPase and ENaC activity via 
the above AMPK-dependent pathway [43].

 In AECs, hypoxia-induced Na+, K+-ATPase endocytosis requires 
the binding of Adaptor Protein (AP)-2 to the tyrosine-based motif  
(Tyr-537) in the α1-subunit of Na+, K+-ATPase, leading to the  
incorporation of Na+, K+-ATPase into clathrin-coated vesicles [44]. 
Subsequently, phosphorylated and ubiquitinated Na+, K+-ATPase  
is degraded in the lysosomes in AECs [45]. Hypoxia-induced  
degradation of Na+, K+-ATPase is prevented by lysosome and  
proteasome inhibitors [39].

Figure 3: Hypoxia induces the endocytosis and degradation of basolateral 
membrane sodium-potassium adenosine triphosphatase (Na+, K+-ATPase) in 
alveolar epithelial cells exposed to hypoxia.

Hypoxia-generated mitochondrial reactive oxygen species activate the α  
subunit of adenosine monophosphate-activated protein kinase (α1-AMPK). 
Activated α1-AMPK increases protein kinase C activity, which phosphorylates 
basolateral membrane Na+, K+-ATPase, leading to its ubiquitination. This  
process leads to the recognition of Na+, K+-ATPase by the Adaptor Protein-2 
(AP-2) and subsequent Na+, K+-ATPase endocytosis via clathrin-coated  
vesicles, which traffic Na+, K+-ATPase to lysosomes for degradation. 
[35,44,45].
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 In addition, mild and severe hypoxia has been shown to lead 
to a disruption in the cytoskeleton in primary rat AECs, including  
disorganisation of actin and α-spectrin; moreover, exposure of AECs 
to mild and severe hypoxia results in the mislocalisation of occludin 
from the tight junction to the cytoplasm and reduced ZO-1 protein  
expression [46]. The hypoxia-induced reduction in occludin  
abundance in the AEC plasma membrane is mediated by PKCζ and 
protein phosphatase 2A [47]. This downregulation may decrease  
alveolar Na+ transport through the paracellular pathway.

Regulation of alveolar sodium and fluid transport by RNS 
and ROS during ALI

 Inflammatory mediators, which play a role in the  
pathophysiological changes in ALI, also induce the production of ROS 
by the membrane-bound enzyme complex NADPH oxidase and RNS 
through calcium-insensitive inducible NO Synthase (iNOS) in lung 
alveolar cells, endothelial cells, and airway epithelial cells, activated 
alveolar macrophages and neutrophils [16,48]. ROS and RNS lead to 
impaired Na+ transport across the alveolar epithelium, resulting in  
alveolar epithelial dysfunction.

 Nitric Oxide (NO) modulates lung Na+ transport under both 
basal conditions and inflammation during ALI [49-53]. Both  
cGMP-dependent and -independent mechanisms are involved in the 
regulation of lung Na+ transport by NO. NO produced by iNOS under  
basal conditions is required to regulate amiloride-sensitive Na+  

transport via ENaC in the lung epithelium [54,55] because iNOS 
knockout mice lack amiloride-sensitive Na+ transport across the  
alveolar and airway epithelia [54]. The specific iNOS inhibitor 
(1400W) injected intraperitoneally in C57BL/6 mice prevented 
Na+-dependent amiloride-sensitive AFC [55]. Endogenous NO  
under basal conditions regulates by the amount of α and γ-ENaC via 
post-transcriptional, cGMP-independent mechanisms [55]. However,  
in the H441 human bronchiolar epithelial cell line, using two NO  
donors, NO was demonstrated to reduce Na+ reabsorption by  
inhibiting the activity of HSC and Na+, K+-ATPase [53]. In AT II 
cells, using a NO donor, NO has been suggested to reduce the activity  
of a predominant apical Na+-permanent cation channel with a  
conductance of 20.6 ± 1.1 (SE) pS and Na+/K+ selectivity of 0.97 ± 0.07 
(possible NSC), and this inhibition is mediated by a cGMP-dependent 
protein kinase [50]. NO reacts with superoxide to form other reactive 
species, leading to different effects on Na+ transport in lung epithelial 
cells. These effects may partially be responsible for the diverse effects 
of NO and NO donors on ENaC activity.

 In vitro and in vivo results from H441 cells have indicated that  
PKGII in the NO/cGMP/PKG pathway activates ENaC [56].  
Additionally, cGMP has been shown to activate either PKG I or  
PKGII in cells, and 8-pCPT-cGMP, a PKGII activator, increased  
amiloride-sensitive short-circuit current (Isc) and whole-cell currents  
in H441 cells in vitro. These upregulations could be inhibited by  
Rp-8-pCPT-cGMP, a specific PKGII inhibitor. Consistently,  
8-pCPT-cGMP improved amiloride-sensitive AFC in vivo. In  
addition, Na+/K+-ATPase downregulation by NO or peroxynitrite has 
also been discovered in the liver, kidneys and lungs [53,57,58].

 Peroxynitrite anion (ONOO¯), is a reactive oxidant produced 
from a reaction between NO and superoxide as a response to certain  
biomolecules, including proteins, lipids and DNA [59]. Physiological  
concentrations of peroxynitrite reduce AT II cell Na+ transport by  
impairing apical amiloride-sensitive Na+ channels [59].

 In FDLEs, the switch from foetal (3%) to postnatal (21%) O2  
concentrations increases ENaC mRNA expression and  
amiloride-sensitive Na+ transport, and additionally induce Nuclear 
Factor-κB (NF-κB) [60]. NF-κB and AP-1 response elements have 
been found in the promoter regions of ENaC subunits [60]. There may 
be a connection between the upregulation of ENaC gene expression 
and the O2-induced transcription factor NF-κB. Changes in oxygen 
concentration also lead to changes in ROS. Because the O2-induced  
enhancement of ENaC gene expression can be inhibited by the 
cell-permeable superoxide scavenger tetramethylpiperidine-N-oxyl,  
the ROS superoxide has been suggested to participate in ENaC  
regulation [60]. In vivo, using two novel whole animal imaging  
approaches, ROS were shown to increase ENaC activity and activate 
lung fluid clearance [61]. Moreover, the balance between superoxide  
and NO may contribute to alveolar fluid homeostasis. Increasing  
endogenous superoxide levels using a superoxide dismutase inhibitor 
(Ethiolat) has been shown to prevent NO inhibition of ENaC activity, 
which was examined using a single channel patch clamp in AT II cells 
[62].

Regulation of alveolar sodium and fluid transport by 
TNF-α during ALI

 TNF-α, a proinflammatory cytokine, plays an important role 
in ALI and ENaC regulation. The increase in TNF-α in blood and  
bronchoalveolar lavage parallels the decrease in mRNA expression 
of the three subunits of ENaC in the whole lung tissue during the  
development of pulmonary oedema. Direct exposure of rat AT II 
cells to TNF-α significantly inhibited mRNA expression of α and 
γ subunits of ENaC and ENaC function [63]. This TNF-induced  
downregulation of ENaC expression and activity can be alleviated 
by dexamethasone [64]. However, TNF-α can also enhance AFC by 
an amiloride-sensitive, cAMP-independent mechanism via either a 
TNF-α receptor-dependent or -independent effect. The latter effect 
stimulates amiloride-sensitive Na+ transport via the lectin-like domain 
of TNF-α [65]. In experimental injury of rabbit lungs, aerosolised  
lectin-like domain of TNF-α (designated TIP, a scrambled peptide 
that corresponds to residues 99-115 of murine TNF-α) can improve 
fluid balance by reducing vascular permeability and increasing Na+, 
K+-ATPase exocytosis to the AEC surface, amiloride-sensitive sodium 
absorption, and AFC [65-67]. Therefore, the role of TNF-α in AFC 
and active sodium transport is still controversial.

Therapies for improving alveolar sodium and fluid  
transport during ALI

 Several mechanisms influence alveolar active Na+ transport, 
thus contributing to the maladjustment of AFC in patients with  
ALI/ARDS. The major contributors to alveolar active Na+ transport 
are apical ENaC and basal Na+, K+-ATPase in the alveolar epithelium; 
thus, upregulation of alveolar active Na+ transport, especially through 
ENaC and Na+, K+-ATPase, may be essential for better clinical  
outcomes. 

 Overexpression of the Na+, K+-ATPase subunits via gene transfer 
shows a potential therapeutic role in improving AFC and epithelial  
function. Adenovirus-induced gene transfer of the α2-Na+,  
K+-ATPase gene leads to protein overexpression of α2-Na+, K+-ATPase 
and increased Na+, K+-ATPase activity in rat AECs and human A549 
cells and enhanced α2-Na+, K+-ATPase protein expression in vivo and 
in ventilation-induced injured lungs, thus improving the basal lung 
fluid clearance rate [26,68]. β1-Na+, K+-ATPase over expression via  
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adenovirus-mediated gene transfer has been demonstrated to be  
efficient for augmenting lung liquid clearance in normal and injured 
rat lungs [69,70]. By using electroporation, this non viral gene transfer 
of β1-Na+, K+-ATPase improves Na+, K+-ATPase activity and AFC [71]. 
The similar results were observed when using the same experimental 
technique in lung contusion-induced lung injury. Gene transfer of the 
α and β subunits of Na+, K+-ATPase led to improved recovery from 
ALI [72]. Above all, upregulation of Na+, K+-ATPase via gene transfer 
of its subunit genes (α2- or β1-Na+, K+-ATPase) has proven to be useful, 
even for improving AFC in normal and injured rat lungs.

 β2ARs are distributed throughout the lung [73] and mediate  
β-adrenergic stimulation of Na+ and fluid transports [74]. There is no 
significant difference in the total water content between mice without  
β1AR or β2AR and wild-type controls. β2AR signalling has been  
suggested not to be required for basal AFC. However, for physiological 
adaptive responses, such as hyperoxia, β2AR signalling is needed for 
AFC in normal and injured lungs [75]. β2AR stimulation can increase 
the activity, expression, and membrane insertion of ENaC and Na+,  
K+-ATPase and activate CNG cation channels in the alveolar  
epithelium by increasing intracellular cAMP and cGMP, thus  
improving AFC [14,31,76]. Moreover, β2AR-mediated stimulation 
of Cl¯ transport via CFTR also contributes to increased alveolar fluid  
transport [73]. Both AT I and AT II cells express CFTR and are  
capable of Cl¯uptake [77]. This interdependency between CFTR 
and β2AR is required for β2AR-stimulated alveolar Na+ and fluid  
transport [78]. In AECs, β2-agonists stimulate adenylyl cyclase and 
subsequently increase intracellular cAMP and activate protein kinase 
A (PKA). PKA augments the number of HSCs, increases NSC activity, 
and upregulates Na+, K+-ATPase and CFTR [73,79]. However, FDLEs 
exposed to the β2-adrenergic agonist terbutaline have increased Na+ 

transport via a post-transcriptional increase in α1-Na+, K+-ATPase 
protein expression, without significant effects on β1-Na+, K+-ATPase 
and ENaC [25], suggesting that β2-adrenergic agonists play different  
roles in ion transport in adult and foetal distal lung epithelium.  
Furthermore, prolonged treatment with terbutaline impairs β2AR  
signalling in the alveolar epithelia and whole lungs [32].

 In addition to, other catecholamine, such as dopamine and  
isoproterenol, have been discovered to potentially upregulate AFC 
[75,80,81]. Increasing endogenous and clinically administered  
dopamine improve AFC by upregulating the alveolar epithelial 
Na+, K+-ATPase [80,81]. Dopamine increases both ENaC and Na+,  
K+-ATPase activity via different mechanisms [80,82,83]. The former 
is induced by a cAMP-mediated, alternative signalling pathway [82], 
and the latter is mediated by Na+, K+-ATPase exocytosis from late  
endosomes merged into the basolateral membrane of AECs [83].

 Although the use of a high-dose Glucocorticoid (GC) for ALI  
patients remains controversial, DEX enhances the expression of ENaC 
and Na+, K+-ATPase during both normoxia and hypoxia in rats and 
primary alveolar AT II cells [33]. GC signalling is mediated by the GC 
Receptor (GR). Mice with a GR deficiency in all tissues are born dead 
due to respiratory failure. In lung epithelium-specific GR knockout  
mice, a reduction in mRNA expression for surfactant proteins,  
transepithelial Na+ transport, and fluid clearance at birth is seen, 
which may be involved in decreased viability [84]. Glucocorticoids 
increase the surface abundance of the ENaC subunits (α-, β- and 
γ-ENaC) via a mechanism that may dependent on the activation of 
Serum and Glucocorticoid-inducible Kinase 1 (SGK1). However, brief 
but not prolonged exposure of H441 human airway epithelial cells 
to dexamethasone activates SGK1 and leads to an SGK1-dependent  

increase in the surface abundance of the ENaC subunits. This  
upregulation could not explain the persistent activation of ENaC 
[85]. Even so, SGK1 plays an important role in activating lung ENaC 
[85,86]. These findings suggest that Na+ transport stimulated by  
catecholamines and glucocorticoids strengthens AFC and may related 
to better clinical outcomes for ALI patients.

Summary
 Increased pulmonary oedema formation occurs in ALI/ARDS.  
Patients who failed to remove alveolar oedema fluid rapidly have worse 
clinical outcomes. AFC depends on vectorial active Na+ transport via 
apical Na+ channels and basolateral Na+, K+-ATPase and paracellular 
Na+ transport. Hypoxia in the course of ALI leads to impaired AFC via 
downregulation of ENaC, Na+, K+-ATPase, and intercellular junctions.  
The inflammation during ALI contributes to increased RNS, ROS and 
TNF-α level, which result in different regulation pattern of lung Na+ 
transport across the alveolar epithelium. However, although these 
agents play a notable role in ALI, the regulatory mechanisms for  
alveolar Na+ and fluid transport in ALI are still undefined.  
Catecholamines and glucocorticoids stimulate Na+ transport and 
AFC; in particular, β2-agonists have been shown to play a remarkable 
role in limiting alveolar oedema in preclinical experimental studies. 
A single-centre, placebo-controlled small clinical trial reported that  
sustained treatment with intravenous β2-agonists reduces  
extravascular lung fluid in patients with ALI [87]. However, two  
recent multicentre, placebo-controlled large clinical trials have  
reported that both intravenous and aerosolised β2-agonists therapies  
did not improve clinical outcomes in patients with ALI [88,89].  
Routine use of β2-agonist treatment in mechanically ventilated  
patients with ALI cannot be recommended. Intravenous β2-agonists  
could increase mortality in patients with early ARDS, but the  
underlying mechanisms of this increase remain unclear. The results of 
these large controlled clinical trials are more convincing; however, the 
cause of the different results between preclinical experimental studies 
or the small controlled clinical trial and the large controlled clinical 
trials need to be explained.
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