
Anatomy of the Intervertebral Disc
	 The Human Intervertebral Disc (IVD) is a fibrocartilagenous  
structure positioned between each connecting vertebra of the spinal 
column. Mechanically, the IVD transmits load, arising from body 
weight and muscle activity, and permits a range of spinal movement  
including bending, flexion and torsion [1]. The normal IVD is  
composed of three morphologically distinct regions: the  
Cartilaginous End Plates (CEP), the highly organised Annulus  
Fibrosus (AF) and the central gelatinous Nucleus Pulposus (NP), 
which operate collectively to mechanically transfer loads and disperse 
energy evenly throughout the spine. The CEP is a layer of hyaline 
cartilage which separates the AF and NP from the adjacent vertebral 
body and facilitates diffusion of nutrients and oxygen to the avascular 
internal structures of the IVD [2,3]. The AF can be further subdivided  
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into the outer and the inner AF. The outer AF contains large amounts 
of fibrous collagen type I orientated into lamellae, providing resistance 
to tensile forces from bending and twisting of the vertebral column  
[4]. The inner AF is a transition zone between the randomly  
organised, hydrated NP and the highly organised, fibrous outer AF, 
with characteristics of both tissue types observed in this region. The 
NP has a gelatinous matrix composed of randomly arranged collagen  
type II fibres, radially arranged elastin fibres and small amounts 
of collagen types VI, IX and XI, all of which are embedded in a  
highly hydrated matrix rich in proteoglycans (mainly aggrecan) [5]. 
The hydrated proteoglycans provide viscoelasticity and resistance to 
compression whilst the collagen crosslinks confer tensile strength [6].

Cell Types Present in the Normal IVD
	 The cells which reside in the NP and AF are morphologically 
and phenotypically distinct. At maturity the AF contains elongated  
fibroblast like cells at a cell density of approximately 9 x 106 cells/ cm3 
[7]. At birth NP cells display large (25-85 µm) vacuolated morphology  
with distinct resemblance to the embryonic notochordal cells from 
which they are assumed to originate [8-10]. During maturation the 
population of large vacuolated cells within the NP decreases and  
becomes replaced by smaller, round and non-vacuolated chondrocyte 
like cells at a cell density of approximately 4 x 106 cells/ cm3 [7,10,11]. 
The origin of these smaller chondrocyte like cells in the NP is  
currently an unresolved area of IVD research with controversy as to 
whether the chondrocyte like cells migrate from surrounding tissues 
or differentiate from the notochordal cells [12,13]. Furthermore a  
definitive phenotypic maker of NP cells is yet to be characterised, thus 
the origin and profile of these cells remains a significant challenge for 
cell based regenerative strategies [14-18]. 

Degeneration of the IVD
	 Degeneration of the IVD is characterised by progressive changes 
in the Extracellular Matrix (ECM) due to altered cell metabolism, 
matrix synthesis and an increase in degradation of normal matrix  
components [19,20]. As IVD degeneration advances collagen type II 
in the NP is gradually replaced by the more fibrous collagen type I 
[7]. The overall proteoglycan composition of the NP is reduced and 
altered by decreased synthesis of aggrecan and increased synthesis 
of versican, decorin and biglycan, thus resulting in reduced water  
bibing capacity and a consequential decreased hydration of the  
extracellular matrix within the NP [21,22]. Concurrently matrix 
degradation is accelerated by the upregulation of MMPs (Matrix  
Metallinoproteinases) and ADAMTS (A Disintegrin And  
Metalloproteinase With Thrombospondin Motifs) [23,24].  
Compositional changes in the matrix during IVD degeneration is also 
accompanied by cellular changes with increased apoptosis [25,26] and 
senescence [19,27,28] displayed by NP cells, together with decreased 
tissue cellularity and viability of remaining disc cells [19,29]. 

	 The cells of the IVD produce a plethora of catabolic cytokines and 
chemokines [30-40] with highest expression seen in the NP and inner 
AF [30,33], expression within the outer AF is differentially expressed, 
with posterior AF tissue displaying higher expression of cytokines 
than the anterior AF [38]. There is increasing evidence supporting the 
role of a pivotal cytokine: Interleukin (IL)-1 in the pathogenesis of  
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Abstract
	 Low back pain, strongly associated with intervertebral disc  
degeneration, is one of the most prevalent health problems in the 
western world today. Current treatments have been directed toward 
alleviating patient symptoms but have been shown to accelerate  
degenerative changes in adjacent discs. New approaches in tissue 
engineering have provided a variety of treatment options including  
the delivery of regenerative cells, either alone or together with  
hydrogel scaffolds in order to restore/maintain disc biomechanics 
whilst simultaneously regenerating the matrix. This review paper  
discusses the use of cellular and acellular therapeutic strategies for 
IVD degeneration with an emphasis on the importance of tailoring  
the treatment strategy with stage of degeneration, thus offering  
insight into the future clinical options for IVD regeneration.
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IVD degeneration [30,31,33,41-45]. With an increase in the  
production of the IL-1 agonists (IL-1α and IL-1β) and their active  
receptor IL-1RI, without a concordant increase in the natural  
inhibitors: IL-1 Receptor antagonist (IL-1Ra) or the decoy receptor: 
IL-1RII; within the cells of the NP and inner AF [33]. IL-1 has been 
shown to induce a plethora of catabolic events, which are linked to 
degradation of matrix [33,42], neuronal ingrowth and blood vessel  
ingrowth into the normally aneural and avascular disc [41,46].  
Inhibition of IL-1 in IVD tissue in vitro has been shown to  
completely abrogate matrix degradation [42] whilst inhibition of 
TNF alpha had no such effect [42]. The importance of IL-1 in the 
pathogenesis of disc degeneration was furthered by the observation 
that spontaneous IVD degeneration occurred in a knockout mouse 
model where the natural inhibitor of IL-1 (IL-1Ra) was removed [47], 
which is further supported by the findings that polymorphisms in the 
IL-1 gene cluster increases the risk of IVD degeneration and low back 
pain [48-51]. These cellular changes during IVD degeneration lead to 
increased production of cytokines, matrix degrading enzymes, and 
leads to angiogenesis and nerve ingrowth which lead to sensitization 
of local nerves and painful stimuli. In addition release of cytokines 
from the degenerate disc, particularly following herniation leads to 
damage to the local nerve root, facet joints and adjacent vertebrae.

	 The cell mediated imbalance between normal matrix synthesis and 
degradation collectively results in a loss in the structural integrity of 
the NP with reduced hydration, reduced osmotic swelling pressure 
and overall reduced disc height [52]. This results in a diminished  
ability to withstand load and asymmetric distribution of  
compressive forces which leads to the formation of tears and fissures 
through the AF, increasing the risk of disc herniation and providing 
an access route for the ingrowth of nerves and blood vessels associated 
with the sensation of chronic low back pain [41].

Current Treatments for Degenerative Disc Disease
	 Current practises for the treatment of low back pain are  
directed towards alleviating patient symptoms by conservative  
treatments including pain management, lifestyle adjustments and  
rehabilitation programs or surgical procedures to stabilise or remove 
the damaged tissue including discectomy and spinal fusion [53].  
Despite this, these treatments are often associated with altered spine 
biomechanics and accelerated degenerative changes in adjacent 
discs [54,55]. Emerging treatments, driven by scientific research, 
have aimed to develop a biological approach which addresses the  
underlying pathogenesis of IVD degeneration. Many studies have  
explored the use of protein delivery to inhibit catabolic factors,  
promote matrix synthesis or reduce inflammation [32,56-59]. Despite 
this, the use of growth factors alone fails to treat the dysfunctional 
NP cells which display increased expression of catabolic factors [37], 
decreased synthesis of matrix components and increased senescence 
[19,27,28], thus driving degeneration.

	 Consequently, a vast amount of research has focused on the use 
of cells, either alone, or together with biomaterial scaffolds, in order  
to repopulate the NP and simultaneously regenerate the matrix  
(Table 1). From a clinical perspective the aim is to restore/maintain 
spine biomechanics and alleviate patient symptoms, thus the use of 
cells in combination with a biomaterial scaffold to regenerate the  
matrix whilst restoring disc height appears to be an attractive  
strategy. Counter to this argument however is whether the  
regenerative capacity of cells is necessary or just an added  
complication, particularly for regulatory approval. Recent progress in  

tissue engineering has produced a magnitude of biomaterial scaffolds 
with improving resemblance both structurally and mechanically to 
the native NP, thus the development of a non-degradable biomaterial  
which mimics the functional biological matrix enough to provide the 
correct biomechanics may render the use of cells unnecessary. This 
review discusses the potential future treatment strategies of IVD  
degeneration including the use of cells or biomaterials, used  
individually or in combination, in order to answer the question: what 
is the ideal strategy for IVD regeneration?

Cells Alone for Disc Degeneration
	 The choice of cells to be used in IVD regeneration must be  
carefully considered to ensure successful therapeutic outcome. The 
implanted cells would need to meet certain requirements for adoption 
into clinical practice: they should be easily sourced and available in 
sufficient numbers to repopulate the NP; cells should be autologous  
where possible to minimise immunogenic risk and be capable of  
regenerating the correct biological matrix in order to functionally  
replicate disc metabolism and biomechanics [75]. The safety,  
effectiveness and viability of the cells must also be thoroughly  
characterised within the hypoxic and acidic disc microenvironment.

	 The use of autologous NP cells would be the ideal strategy 
and a variety of studies have shown them to be successful; both  
biologically to regenerate the NP matrix and clinically to reduce 
pain [76-78,]. Transplanted disc derived chondrocytes injected into  
degenerated IVDs of dogs were found to maintain retention of disc 
height and promote proteoglycan and collagen type II deposition [76]. 
Furthermore patients treated with autologous disc cell transplantation 
following discectomy, as part of the Euro Disc Randomised Trial,  
reported pain reduction after two years, in comparison to patients who 
did not receive autologous disc cell transplantation [76]; however, due 
to a lack of follow up on these patients, the long term effectiveness  
of this treatment cannot be accurately assessed. Furthermore, due to 
the low NP tissue cellularity, the harvesting of NP cells from more 
than one disc or in vitro expansion of cells for several weeks would be  
required to obtain a sufficient number of viable cells for  
transplantation. The use of autologous NP cells extracted from  
degenerate discs may also be inappropriate for regenerative purposes 
due to the increased expression of catabolic factors [37], decreased 
synthesis of normal matrix components and increased senescence 
displayed by these cells [19]. Finally the needle puncture which is  
currently used to extract autologous NP cells, has been shown 
to accelerate degenerative changes [79-81]. Non-autologous cell  
sources such as notochordal cells have also been investigated as  
potential candidates for NP regeneration [82,83]. Recently Potier et 
al., (2014) showed that notochordal cell-rich nucleus pulposus tissue 
stimulates matrix production by bone marrow stromal cells and NP 
cells, combined with increased NP cell proliferation and expression of 
NP phenotypic genes, thus promoting NP regeneration [84]. Despite  
this, the use of notochordal cells raises concerns regarding the  
allogeneic source required [11], the low cellular abundance [85], 
which may be insufficient to accommodate cell transplantation and a 
lack of understanding as to whether notochordal cells can differentiate 
into a biologically functioning NP cell [86]. 

	 Stem cells, particularly human Mesenchymal Stem Cells (hMSC) 
are an attractive cell choice for IVD regeneration since they can be 
extracted from a variety of adult tissues [87], they have proliferative 
capacity, have the ability to differentiate into multiple cell lineages [88] 
and avoid the ethical issues surrounding the use of embryonic stem  
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Hydrogel Scaffold Material for NP Culture conditions Cellular or Acellular Key Findings Ref

Gelatin hydrogel microspheres In vivo (rabbit) Acellular with platelet-rich 
plasma.

Suppression of degeneration. Proteoglycan 
production in NP and inner AF. 

[60]

Ionic Methacrylated gellan gum- 
(iGG-MA) and photo-crosslinked 
(phGG-MA) hydrogels

In vitro

In vitro and In vivo (subcutaneous rat 
model) 

In vitro and In vivo (subcutaneous)

Acellular and human Inter-
vertebral Disc (hIVD) cells 
encapsulated.

Acellular and fibroblast cells 
(L929 cells) and human 
Intervertebral Disc (hIVD) 
encapsulated hydrogels.

Human bone marrow-derived 
MSCs and nasal chondrocytes

Mechanical properties of cell-laden hydrogels 
increased in comparison to acellular hydrogels. 

Encapsulated cells found to be viable up to 21 
days of culturing. In vivo a thin fibrous capsule 
was observed around implanted hydrogels. No 
evidence of necrosis, calcification, and acute 
inflammatory reaction.

Apoptosis observed in phGG-MA.
Evidence of chondrogenesis following subcuta-
neous implantation of iGG-MA.

[61]

[62]

[63]

Atelocollagen® gel In vivo: Rabbit. Rabbit MSCs Degenerated discs of MSC-transplanted group 
regained a disc height value of about 91% 
compared to normal controls. Proteoglycan 
production confirmed by histological and immu-
nological evaluation.

[64]

Alginate In vitro under hypoxia (2%) and normoxia 
(20%)

Rat MSCs with transforming 
growth factor-β1

Hypoxia induced upregulation of Glucose 
transporter-3, matrix metalloproteinase-2, 
collagen type II and type XI, and aggrecan 
mRNA and protein expression was upregu-
lated, Transforming growth factor-β treatment 
increased MAPK activity and Sox-9, aggrecan, 
and collagen type II gene expression.

[65]

Photocrosslinked alginate In vitro and In vivo (murine subcutaneous 
model)

Bovine NP cells Production of aggrecan and collagen type II. 
Cellular hydrogels were mechanically superior 
to acellular hydrogels.
Young’s modulus of cellular hydrogels signifif-
cantly increased from 4 to 8 weeks.

[66]

Type II collagen and Hyaluronic 
Acid (HA).

In vitro Rat MScs with and without 
differentiating medium.

Increased aggrecan and collagen type II with 
decreased collagen I in hydrogel constructs 
where differentiating medium used.

[67]

Hyaluronan gel (Durolane®), hydro-
gel (Puramatrix®), and tissue-glue 
gel (TISSEEL®)

In vivo mini pigs human Mesenchymal Cells 
(hMSCs), IVD cells (hDCs), 
and Chondrocytes (hCs)

Xenotransplanted hMSCs and hCs survived 
in porcine IVDs for 6 months and produced 
collagen II in all six animals. 
Following six months pronounced endplate 
changes, and bone mineralisation indicating 
severe IVD degeneration were observed within 
all cellular and acellular hyaluronan gel carrier 
groups. 

[68]

Chitosan-GLycerophosphate (C/
Gp) hydrogel

In vitro Human MSCs in standard 
medium.

Production of proteoglycans and collagens in a 
ratio which more closely resembles that of NP 
cells than articular chondrocytes.

[69]

Hyaluronan-poly (N-isopropy-
lacrylamide) hydrogel.

In vitro

In vitro under hypoxia and ex vivo bovine 
caudal discs

Bovine NP cells

hMSCs chondropermissive 
medium alone and with the 
supplementation of transform-
ing growth factor β1 or Growth 
and Differentiation Factor 5 
(GDF-5)

All HA, HA-pNIPAM and their degradation 
products were cytocompatible to NP cells.
Glycosaminoglycan synthesis was similar in 
HA-pNIPAM and alginate gels.
Higher expression of hyaluronan synthases 
and lower expression of COLI and COLII 
mRNA were noted in cells cultured in HA-pNI-
PAM.

Higher GAG/DNA ratio and higher collagen 
type II, SOX9, cytokeratin-19, cluster of 
differentiation 24, and forkhead box protein F1 
expressions were found for hMSCs cultured 
in HA-pNIPAM compared with those cultured 
in alginate.
Ex vivo, direct combination of HA-pNIPAM with 
the disc environment induced a stronger disc-
like differentiation of hMSCs than predifferen-
tiation of hMSCs followed by their delivery to 
the discs.

[70]

[71]

photo-curable (pHEMA-co-APMA 
grafted with Polyamidoamine 
(PAA))

In vitro hMSC with standard and 
chondrogenic differentiating 
medium.

Elevated expression levels of aggrecan and 
collagen II when cultured in chondrogenic 
media under hypoxic conditions, in comparison 
with culture in hMSC media for 14 days.
Significant decrease in stiffness and modulus 
values of cellular hydrogels in comparison with 
acellular hydrogels at both day 7 and day 14.
Increasing cytoxicity with increasing UV 
exposure time. 

[72]
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cells. A number of hMSC sources have been investigated including 
bone marrow, periosteum, synovial membrane and adipose tissue 
[89-91]. Studies have suggested that the source of MSCs are critical 
to the clinical outcome with improved expansive and chrondrogenic 
differentiation potential for cartilage repair in synovial membrane and 
adipose tissue derived MSCs in comparison to bone marrow derived 
MSCs [87-92]. Recently patient matched bone marrow derived and  
adipose derived MSCs were compared to determine their  
differentiation capacity towards NP cells following stimulation with 
the growth factor GDF-6, which demonstrated adipose derived MSCs 
displayed micromechanical properties more akin to the NP than the 
bone marrow derived MSCs suggesting these cells may be more suited 
to NP regeneration [93].

	 Increasing evidence has shown that hMSC are able to  
differentiate into NP like cells and produce a biologically functional 
NP matrix consisting of proteoglycans and collagen type II [94-97]. 
Studies have also shown that co-culture of hMSCs and NP cells not 
only enhances NP cell differentiation, but also restores normal NP cell 
function and increases NP cell proliferation, thus aiding the repair 
process [98-100]. Despite limited publications on the use of MSCs 
alone for the regeneration of the IVD, successful outcomes have been 
reported, particularly in small animal models where transplanted  
bone marrow derived MSCs have been shown to undergo  
chondrogenesis with consequential deposition of proteoglycans and 
collagen type II in both rabbit IVD [97] and rat coccygeal discs [101]. 
Similarly expression of discogenic genes with matrix staining for  
aggrecan and collagen type II occurred where hMSCs were injected 
into an explant NP tissue model [102].

	 The success of hMSCs alone for the regeneration of the IVD in 
small animal models, has not always been replicated in large animal  
models. Henriksson et al., (2009) investigated the survival and  
differential capacity of hMSCs into injured porcine discs both alone 
and with a hydrogel carrier [103]. hMSCs were shown to survive 
and express typical chondrogenic markers, but immunopositivity for  
aggrecan and collagen type II was only observed in cell/hydrogel 
discs. Furthermore, low cell survival and the formation of a collagen  
type I/II scar tissue has been reported following 3 months after  
in vivo injection of allogenic disc derived MSCs [104]. Collectively 
these results suggest that transplantation of cells alone into a large  
animal model is not sufficient to produce the correct functional  
matrix, possibly due to the larger disc size giving a greater nutrient  
diffusion distance, inducing nutrient deprivation for the  
transplanted cells. Furthermore concerns, regarding MSC leakage 
following injection, with consequential undesirable bone formation, 
has been demonstrated as a potential side-effect of this therapeutic 
strategy, thus highlighting the potential need for cell carrier systems 
or annulus-sealing technologies to avoid the pitfalls of this treatment  
approach [105]. Despite this, results from a small human trial,  
whereby 10 patients with disc degeneration but intact annulus  
fibrosus, received an injection of autologous expanded bone marrow  

derived MSCs, reported significant improvements in pain and  
disability 12 months following treatment [96]. However these patients 
demonstrated no evidence of improved disc height [86]. These results  
suggest that the use of hMSCs transplanted into the IVD alone has 
limitations but may be improved with the use of an appropriate  
biomaterial scaffold.

	 The major drawback of MSC based strategies is a lack of  
understanding of the normal NP cell phenotype. The majority of  
studies, including those which have been discussed in this review,  
define NP cell differentiation using traditional chondrogenic genes 
such as Sex Determining Region (SRY) box 9, collagen type II and  
aggrecan [94,102,106,107]. However cells and tissues of articular  
cartilage and NP demonstrate significant differences in terms of  
morphology, ECM disposition and biomechanical behaviour [5];  
consequently, the identification of differential NP markers which can 
be used to inform and thoroughly assess MSC differentiation is the 
current focus of many research studies [14-18,108].

Acellular Biomaterials for Disc Degeneration
	 Acellular biomaterial scaffolds provide a more simplistic  
therapeutic alternative to cellular strategies without the added  
complications of cell harvesting. Similar to cellular strategies, an  
increasingly prevalent issue with acellular strategies is whether one 
acellular treatment will accommodate all stages of degeneration.  
Based on trends in current research, one design strategy for  
acellular treatments could include non-invasive injectable  
monophasic hydrogels combined with inhibitors of degeneration or 
growth factors during early stages of degeneration to repair the NP 
[60], injectable biphasic scaffolds to repair the NP and AF in mid  
stages of degeneration and Tissue Engineered Total Disc  
Replacements (TE-TDR) in severely degenerate cases [109].

	 The use of hydrogels as delivery systems of catabolic inhibitors and 
growth factors to provide an acellular treatment strategy for NP repair 
has been successfully reported [60,110-112]. It must be noted however 
that a recent focus on the use of hydrogels as delivery systems for both 
cells and biomolecules is evident, thus the effectiveness of catabolic 
inhibitors and/or growth factors alone within monophasic scaffolds 
to repair the NP has not been thoroughly assessed. There is a clear 
rationale for this however since a regenerative source would need to 
be combined with mediators to inhibit degeneration to fully restore 
normal disc function.

	 The main challenge in the development of monophasic acellular 
hydrogels for the treatment of IVD regeneration is ensuring sufficient 
mechanical properties to withstand the load forces exerted on the  
spinal column. Silva-Correia et al., (2013) investigated the  
mechanical properties of acellular and cell laden ionic- and  
photo-crosslinked methacrylated gellan gum hydrogels; mechanical 
integrity of acellular hydrogels was maintained throughout the 21 
day culture period, however cell-laden hydrogels were mechanically  
superior [61].

Chitosan/Gelatin/β-Glycerol 
Phosphate (C/G/GP) disodium salt 
hydrogels

In vitro Rabbit NP cells. Increased gene expression of aggrecan and 
type II collagen and increased glycosamino-
glycan production in NP cells cultured in the 
hydrogel in comparision to monolayer controls.

[73]

Gelatin/chitosan/glycerol phos-
phate hydrogel with ferulic acid.

In vitro Rabbit NP cells Up-regulation of MMP-3 and up-regulation 
aggrecan and type II collagen in mRNA level.
The sulfated-glycosaminoglycan production 
was increased and the apoptosis was inhibited 
in the post-treatment group.

[74]

Table 1: Hydrogels used for NP regeneration.
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	 Total Disc Replacement (TDR), which consists of polyethylene 
on metal, or metal on metal implants engineered to resemble a low 
friction ball and socket joint, is currently considered as an alternative  
treatment strategy to spinal fusion [113]. This method does not 
avoid invasive surgery since the excision of the degenerate disc is  
unavoidable, however does restore some mobility to the intervertebral 
joint which could reduce the risk of adjacent disc degeneration [114]. 
Considerable debate as to whether TDR is more efficacious than  
spinal fusion still remains. A Cochrane review [114] systematically  
assessed the efficacy outcomes of TDR in terms of motion  
preservation, adjacent disc degeneration and patient satisfaction and 
concluded that no evidence of superior clinical outcomes between 
TDR and spinal fusion was observed. Furthermore the authors of 
this review advised that caution should be taken when considering  
the adoption of TDR into wide scale clinical practice since the  
effectiveness of TDR is patient dependent and complications may 
arise years following treatment [114]. Despite this, Siepe et al., (2010) 
conducted a 5-10 year follow up of patients whom had undergone  
TDR as treatment for disc degeneration and concluded that TDR 
were a viable treatment alternative to spinal fusion [115]. It is clear 
that both spinal fusion and TDR have limitations, however the  
development of novel polymeric implants which replicate the  
biomechanics of the natural disc could be considered as an effective  
acellular strategy, particularly in severe stages of degeneration, 
where the use of monophasic biomaterials or cells alone would be  
insufficient to provide the biological functions of all anatomical  
regions of the IVD. In particular novel viscoelastic TDR materials have 
been developed which replicate the flexibility, stiffness and stress/stain 
dynamics of native disc, thus could be used as a more mechanically 
efficacious implant material for TDR in the future [109,116].

	 Despite the development of novel polymeric materials which could 
be used as a single material implant for TDR, more effective outcomes 
may be achieved with a Tissue Engineered (TE) strategy, including 
a combination of biomaterials in order to effectively replicate the  
total IVD (NP, AF, CEP). To date, biphasic scaffolds, seeded with 
cells, have shown potential for regeneration of two of the anatomical  
regions of the IVD (NP and AF) [117,118]. Furthermore, calcium 
polyphosphate substrates have been used to engineer cartilaginous  
end plates [119,120]. The success of combining multiple  
biomaterials as an effective acellular strategy is dependent on  
replicating the correct biomechanical properties of the NP, AF and 
CEP. A TE-TDR which replicates all three anatomical regions is yet to 
be developed, however the studies discussed here demonstrate clear 
progression in the aim to develop a functional spinal unit.

Cellular Biomaterials for Disc Degeneration
	 As discussed, the use of cells alone or acellular biomaterials for 
disc repair, individually have shown some success for the treatment  
of IVD degeneration, both, however provide different clinical  
outcomes, such as the regenerative capacity provided by the use of 
cells and the mechanical support provided by acellular biomaterial 
scaffolds; consequently current research has focused on the use of 
cellular biomaterial scaffolds (Table 1) which provide biomechanical  
support whilst simultaneously regenerating the NP matrix, thus  
resulting in an integrated and biologically functioning tissue. The ideal 
load bearing biomaterial scaffold for IVD regeneration, which meets 
all requirements in terms of biocompatibility, bioactivity, mechanical  
properties and injectability, is yet to be produced. However a  
limited number of studies have demonstrated success in terms of 
hMSC encapsulation and differentiation towards the NP lineage.  

Traditionally the biocompatability of natural polymer scaffolds has 
been an appealing choice for NP repair, including collagen [121],  
alginate [65], gelatine [60], hylauronan [67,68], chitosan-glycerophos-
phate [94,107] and thermoresponsive hyaluronic acid (Table 1) [71]. 
However the use of natural polymers raises concerns regarding batch 
variation and immunogenic risk; consequently a number of studies 
have looked to develop synthetic polymer scaffolds which have the 
added advantage of synthesis control, large scale production and the 
ability to tailor bioactivity, mechanical properties and degradation  
rates. However toxic chemicals including initiators, stabilisers,  
organic solvents, cross linkers, emulsifiers and unreacted monomers 
which may be used in the synthesis and polymerisation of synthetic  
hydrogels pose a significant safety risk [64,122]. An ideal  
biomaterial scaffold, particularly in early stages of degeneration when 
it may not be necessary to excise the degenerate disc, would be an 
injectable hydrogel which delivers cells and biomolecules followed by 
in situ solidification; however this again poses significant challenges 
since potentially toxic unreacted material may need to be injected 
directly into the body, for this reason a variety of hydrogel systems 
with different fabrication techniques have been investigated [122]. 
Encapsulation and subsequent discogenic differentiation of MSCs  
has been performed in synthetic photo-crosslinked hydrogels,  
however apoptosis [63] and cytotoxicity with increasing UV exposure 
time [116] has been observed using this fabrication technique; thus 
raising concerns regarding the use of photocrosslinking not only to 
the implanted cells but also to surrounding tissues during delivery  
[72]. An attractive alternative to photo-crosslinked hydrogels is 
the use of thermo-reversible hydrogels which undergo liquid to gel  
transition at body temperature [71,73,123]. Studies have  
demonstrated successful biocompatibility, discogenic differentiation  
and deposition of an NP like matrix by MSCs cultured in  
thermo-responsive Chitosan-Glycerophosphate (C/Gp) hydrogels 
[94,124]. Further work by Cheng et al., (2013) showed sustained  
release of the antioxidant ferulic acid in thermosensitive  
Chitosan-Gelatin-Glycerol Phosphate hydrogels, with consequential 
reduction in catabolic mediators and increased synthesis of normal 
matrix components, thus could be combined with cells to enhance 
NP regeneration [74]. Alternatively the use of a thermo-reversible  
Hyaluronan-poly(N-Isopropylacrylamide) (HA-pNIPAM) hydrogel  
has been recently shown to induce discogenic differentiation of MSCs 
with production of an NP like matrix under hypoxic conditions 
[71,70].

	 The majority of cellular hydrogel systems have been designed 
for NP regeneration (Table 1) since this is the main region which  
undergoes significant cellular and matrix changes during  
degeneration of the IVD [19,20]. Despite this, NP repair is likely to be 
insufficient, particularly in severely degenerate cases where tears in the 
AF may result in extrusion of the implanted biomaterial and/or cells; 
consequently a variety of studies have investigated biphasic scaffolds 
which aim to repair the AF and NP simultaneously [118,125,126]. The 
use of electrospinning polymeric material has attracted significant  
interest in order to the replicate the highly organised native AF  
structure [127]. Lazebnik et al., (2011) used a biomimetic strategy by 
combining porcine chondrocyte cell seeded agarose gel surrounded 
by cell seeded electrospun polycaprolactine fibres and observed that 
cells were viable, well distributed and orientated themselves in the  
direction of the fibres [128]. Successful incorporation of growth  
factors to enhance regeneration has also been shown in electrospun  
scaffolds [129]. Furthermore, biphasic scaffolds consisting of a  
hydrogel NP centre surrounded by a polymeric electrospun AF  
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scaffold have been shown to possess superior mechanical properties 
[128,130].

	 Despite recent success of NP regeneration in vitro and in small 
animal models, there are still significant challenges that remain  
before such studies can be scaled up to pre-clinical analysis.  
Unresolved questions include: what is the ideal cell type and source? 
Is the use of a biomaterial scaffold necessary? At what stage of  
degeneration is regenerative cell therapy clinically applicable?  
Furthermore, Reitmeir et al., (2014) conducted an in vivo efficacy 
study whereby bone marrow derived MSCS were encapsulated within 
hydrogels, incorporated with anti-angiogenic factors and implanted  
into ovine disc; following 12 weeks no significant difference in  
biomechanical properties was observed between implanted and  
untreated discs and disc height and degeneration score deteriorated  
for all implant treated discs [131]. Thus caution should be taken 
when considering in vitro results since the complex molecular and  
biomechanical disc microenvironment makes replication of in vitro 
results in vivo extremely difficult. 

Personalized Therapies
	 The recent advances in quantitative MRI imaging [132] may one 
day enable the clinician to identify early stages of degeneration which 
could be targeted by cell based therapies alone, whilst it is likely mid 
stage degeneration may require cells together with biomaterials.  
However, certain patients may not be suitable for cell based therapies 
and acellular approaches may be more suitable, such as those with end 
plate calcification. With the advent of specialist imaging modalities 
personalised therapies may become possible.

Discussion and Future Outlooks
	 When considering the most effective treatment for IVD  
degeneration it is important to define and diagnose the IVD by 
stage of degeneration. A multitude of hydrogel scaffolds for IVD  
degeneration has been proposed each of which is competing to  
provide the ideal therapeutic strategy. It is clear however that one 
scaffold will not suffice; clinicians should be presented with a variety  
of treatment options, both cellular and acellular, in order deliver the 
most efficacious, safe and cost effective treatment for the stage of  
degeneration. In order to reduce the amount of current surgical  
practise on IVD repair, which at present is clinically counter intuitive, 
scientific research into IVD degeneration must remain at the forefront 
in order to bridge the gap between research therapeutics and adoption 
into clinical practise.
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