Site Map
Editorial
Beyond Surgical Outcomes Research: Value-based Surgery
Grant T Fankhauser*
Department of Vascular Surgery, University of Texas Medical Branch, Galveston, USA

Editorial
Value in healthcare is defined as the quality obtained for cost expended. Value-based surgery is surgical practice based on the concept of pursing value. Value-based surgery encompasses ideas of cost-effectiveness, comparative research, and outcomes research, but looks at the outcomes and quality achieved from a more thorough perspective. Expectations of surgical practices and results are shifting partly due to renewed interest in national health legislation, but also in response to a need to achieve less with fewer resources. As our practices are expected to grow toward value-based surgery, so too should our research efforts focus on value.

The Patient-Centered Outcome Research Institute (PCORI) was created as part of the Patient Protection and Affordable Care Act in 2010 [1]. The goal of the institute is to focus on research that is patient-centered while keeping in mind the tenets of Comparative Effectiveness Research [2]. Comparative Effectiveness Research includes measures of cost-effectiveness as well as efficacy and helps to guide treatment decisions when more than one treatment option exists [3]. Value-based research goes further. The formula for value in healthcare is simple: quality divided by cost [4]. But, calculating value is anything but simple.

Cost-effectiveness is relatively easy to calculate, especially when it comes to comparing two treatments for a disease. While precise dollar figures may be difficult to attach, the process of choosing the more cost-effective treatment tends to be straightforward. For example, take two approaches for cholecystectomy: open and laparoscopic. For each procedure we can calculate the average procedure time, the cost of supplies and disposables, amortization and depreciation of equipment, the length of hospital stay, the total cost of hospital stay, and the number of postoperative visits. We can factor in the professional fees and hospital collections for each procedure and determine which is more cost-effective at one week, one month, and one year. We can even factor in the average rate of complications, such as wound infections, and the cost of them over one month, three months, or twelve months. Those factors may change the cost-effectiveness calculation or further reinforce the cost-effectiveness of one approach.

But, what happens if we factor in the rates of long-term complications, such as incisional hernias and adhesive small bowel obstructions? What if, by the time these complications occur in say five or ten years, that only 50% of patients will be seeking care at the hospital where they underwent surgery and only 33% of patients still have the same health insurance company? The cost effects of the original decision between open and laparoscopic cholecystectomy cannot be calculated for a patient’s new insurance company or a hospital out-of-state. The only way to calculate the cost effects would be to the healthcare system at-large, and since we do not have a single-payer system in the US, that calculation does little good.

Research by value-based surgery methods can help answer those questions. Value-based surgery aims to incorporate the general concept of cost-effectiveness but take it farther. Value-based surgery incorporates numerous outcome metrics, beyond those easily defined by costs, such as the amount and cost of pain medication required, the cost of other medication required, the time required to return to work, the time required to return to leisure activities, the time to regain normal appetite, freedom from disease recurrence, and freedom from long-term complications or side-effects. Unexpected outcomes--such as wound infections, readmission to the hospital, returning to the operating room, missing work, disease recurrence, the need for long-term medications, multiple postoperative visits, or chronic pain--are included in the value analysis. Valuation is often quantifiable but qualitative inputs can be included. A value-based analysis can guide surgical decision-making more accurately, and more completely, than a cost-effectiveness analysis.

The strength of value-based analysis is its applicability on both the micro- and the macro- level. Value-based analysis can be performed on two different surgical treatments for a given problem. Value-based analysis can also be performed for two or more surgeons performing the same procedure. Such an analysis can include operative time and costs, length of stay, rate of complications and associated costs, and payer mix. A value-based analysis at the level of the department can analyze the value of one or more surgeons focusing on certain procedures while others focus on different procedures. A value analysis at the level of the hospital may look at which surgical specialties or divisions get additional block time or preferred starting times. Such an analysis might include the Net Operating Income (NOI) for the procedures performed but could also factor in such things as the referral patterns of the surgeons to the hospital for laboratory or imaging studies or the surgeons’ use of an affiliated outpatient surgery center. A value analysis of a health system could analyze the mix of services offered at various hospitals across a city, county, or state, and guide the regionalization of certain services such as cardiac surgery, major cancer resections, or transplants.

Value-based surgery (surgical practice based on value analysis) not only provides better outcomes for patients but provides more efficient care delivery for surgeons, departments, hospitals, and health systems. With increasing healthcare costs and a greater focus on cost containment, practice patterns will have to grow from those based on patient-centered cost-effectiveness into those derived from value-based care. We should begin shifting our research efforts in the same direction to stay ahead of the coming change.

Abbreviations
FMH: Fetomaternal Hemorrhage;
KB: Kleihauer-Betke
Introduction
Fetomaternal hemorrhage was first described by Wiener in 1948 [1]. This condition is considered physiological if a small amount of fetal blood enters the maternal circulation [1] and it occurs in 50 to 75% of all pregnancies. In this case, the volume of the transfusion ranges from 1 to 50 mL. The majority of blood losses are 1 mL or less, 1 in 400 cases are approximately 30 mL and 1 in 2000 the transfusion volume is about 100 mL [2].

Sometimes, besides the rarity of the condition, FMH involves a large amount of fetal blood which can lead to important fetal morbidity and mortality [1]. During pregnancy, clinical manifestations can be subtle and nonspecific which difficult the recognition of this condition. Antenatal suspicion of the diagnosis should occur when absent fetal movements is reported.

We describe this case to alert for this condition and the importance of maternal symptoms and newborn clinical findings. The prompt recognition and intervention is the key to the prognosis of this entity that can be fatal.
Clinical Case Report
A 31-year-old primiparous female, at 35 weeks gestational age, presented to obstetrics emergency department complaining of absence of fetal movements for the last 12h before admission.

She had been regularly attending the antenatal consultations with no risk factors identified. Her prenatal laboratory results were unremarkable except for GBS-unknown. She had three normal obstetric ultrasounds (one of each trimester); her blood type was A+. Pregnancy was uneventful with no history of vomiting, blood loss or abdominal trauma.

On admission at the delivery unit, the obstetric ultrasound revealed no fetal movements with the presence of heart beat. The Cardiotocograph (CTG) was not tranquilizing as it showed prolonged deceleration and reduced variability with pathological trace that suggested a sinusoidal pattern and, as a result, an emergent caesarean section was performed (Figure 1).A baby boy was born weighing 2610g. The newborn had a circular of the umbilical cord around the arms. On examination at birth, he was markedly pale and hypotonic with respiratory depression. Orothracheal intubation and connection to mechanical ventilation was immediately performed. He responded well and was extubated 4 minutes after and transferred to the neonatal unit with oxygen directly to his face, for further evaluation and management. The Apgar score was 5/8/8.

Initial blood gas from the umbilical cord revealed pH 7.27, pCO2 50.6 mm Hg, Hemoglobin 4.4, g/dL, bicarbonate 21.9 mmol/L and lactates 5.8 mmol/L. Laboratory exams revealed 4.0 g/dL of hemoglobin, white blood cell count of 47.700/10 EXP 9/L with 22.7% neutrophils (10.800), platelets count 183.000/10 EXP 9/L, DHL 680 UI/L, CK 190 UI/L. Further laboratory evaluation was unchanged (bilirubin, cardiac enzymes and C reactive protein). Coombs test and viral serology for Parvovirus B19 and Cytomegalovirus were negative. Hemoglobin electrophoresis showed a presence of 5% fetal hemoglobin on mother’s blood. Kleihauer-Betke test was performed, since it is a more specific exam and quantifies the amount of blood transfusion. It revealed 17.8% of fetal red cells in maternal circulation, which corresponds to a volume of approximately 890 mL of fetal blood based on the formula: (% of fetal cells determined by Kleihauer-Betke test/100) X 5000 mL = volume of FMH (in mL) [3] and also according to the fact that 1% of fetal erythrocytes in maternal circulation is equivalent to a fetal hemorrhage of 50mL [4].

Two red blood cell transfusions were made and at 12 hours of life his hemoglobin was 13.3 g/dL, white blood cells count of 10.100/uL (Neutrophils: 64.4%), platelets count of 219.000/uL and erythroblasts 87/100 leucocytes.

The outcome was favorable with hemodynamic and respiratory stability and absence of abnormal movements. Cranial ultrasonography showed, in the 3rd day of life, frontal bilateral parenchymal hyperechogenicity, was not present on 11th day of life as the ultrasounds were made by two different physicians. The authors admit that the hyperechogenicity have not been valorized by the second physician.

Follow-up at 2 and 4 months revealed a normal physical and neurological examination.
Discussion
Clinical presentation of a FMH depends, on the one hand, on the volume of the transfusion and, on the other hand, on the velocity with which it had occurred [5]. The prognosis also depends on the prompt diagnosis and intervention.

FMH can occur as an acute or chronic event. In the chronic presentation, the hemorrhage has been prolonged or repeated during pregnancy, anemia developed slowly, giving the fetus the opportunity to develop hemodynamic compensation. In this case, the diagnosis is often postnatal and these infants may manifest only pallor at birth with no other complications [5].

In opposition, in acute FMH, perinatal hypoxia and intrauterine death or severe anemia and hypoxia at birth can be present [5].

Neonatal anemia was the first manifestation of FMH in 35% of the reported cases. In severe ones, shock and circulatory failure may be present [6].

In our clinical report, it’s more likely to be a chronic transfusion given the rapid ability of the newborn to adapt to extra uterine life despite the hemoglobin value at birth. The absence of fetal movements noted by the mother was not due to the FMH but it was caused by the circular of the umbilical cord around the arms that made it impossible to the fetus to move.

Abdominal trauma and invasive techniques of prenatal diagnosis are related to FMH [1]. Physicians should consider alternative diagnosis to neonatal anemia such as isoimmune hemolytic anemia, congenital infections that result in bone marrow suppression (TORCH), sepsis, congenital erythrocyte defects and congenital hemoglobinopathies [6]. Clinical and laboratory evaluation of infection, Coombs test and viral serology should be performed.

In this case, the diagnosis of FMH was confirmed by the KB test. Pink fetal red blood cells are observed and counted in the mother’s peripheral blood smear because fetal hemoglobin is resistant to acid elution, leaving discolored maternal cells (patients with sickle cell anemia or hereditary persistence of fetal hemoglobin may lead to a false positive result and ABO incompatibility may produce a false negative result) [2].

Although the KB test is inexpensive and requires no special equipment, it lacks standardization and is imprecise [3]. Flow cytometry, based on the use of anti-fetal hemoglobin for detection of fetal cells with fetal hemoglobin, represents an improvement of KB test since is more specific and precise [7].

Although the prognosis of massive FMH is poor, it can be improved if physicians early recognize this condition. When the infant is near-term gestation, immediate cesarean delivery is indicated. If, on the other hand, the fetus is still preterm, in uterus transfusion can be considered and has been shown to be effective and improves the prognosis [6].

Long term outcome for infants affected by massive FMH is unfavorable with death or neurological dysfunction [6]. The prognosis is more directly related to initial hemoglobin value and clinical manifestations post-delivery than with the transfused volume of blood [8].

The case reported emerged from a pregnancy with no risk factors. Mother’s perception of decreased fetal movements, recognition of fetal distress on the CTG, immediate caesarean section and prompt hemodynamic and respiratory support to the newborn with early red blood cells transfusion contributed for this good outcome.

Figures


Figure 1: (a) Chemical structures of PAMPS48-PEG227-PAMPS48 (AEA) and PEG47-PMAPTACm (EMm, m = 27,53, and 106).
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 2: Time-conversion (?) and the first-order kinetic plots (?) for the polymerization of AMPS in the presence of CPD-PEG-CPD in water at 70oC.
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 3: GPC elution curves for a sample of HO-PEG-OH (Mn = 9.40 ? 103; Mw/Mn = 1.06) (----) and triblock copolymer of PAMPS48-PEG227-PAMPS48 (AEA, Mn = 2.32 × 104; Mw/Mn = 1.42) (--).
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 4: 1H NMR spectra for (a) EM53, (b) AEA, and (c) AEA/EM53 micelle in D2O containing 0.1 M NaCl at 20°C. Assignments are indicated for the resonance peaks.
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 5: (a) Light scattering intensities and (b) Rh for PIC micelles of AEA/EM106 (?), AEA/EM53 (?), and AEA/M27 (?) as a function of fAMPS (= [AMPS]/([AMPS] + [MAPTAC])) in 0.1 M NaCl aqueous solutions. [AMPS] and [MAPTAC] represent the concentrations of the AMPS and MAPTAC units, respectively. The total polymer concentration was kept constant at 1 g/L.
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 6: (a) Distributions of Rh for the PIC micelles of AEA/EM106 (?), AEA/EM53 (?), and AEA/EM27 (?) in 0.1 M NaCl aqueous solutions. (b) Relationship between relaxation rate (G) and square of the magnitude of the scattering vector (q2). (c) Plots of Rh as a function of Cp.
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 7: A typical example of Zimm plots for AEA/EM106 micelle in 0.1 M NaCl aqueous solution.
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.



Figure 8: TEM images for (a) AEA/EM27, (b) AEA/EM53, and (c) AEA/EM106 micelles.
[M]0 and [M] represent the concentrations of the monomer at polymerization time = 0 and the corresponding time, respectively.

Tables
SamplesMn(theo)a × 10-4Mn(NMR)b ×10-4Mn(GPC)c ×10-4Mw/MncRhd (nm)?-potential (mV)
EM270.780.830.821.034.518.2
EM531.361.411.111.024.324.2
EM1062.522.581.511.026.125.4
AEA3.213.262.321.426.1-14.4
Table 1: Number-average Molecular weight (Mn), Molecular weight distribution (Mw/Mn), hydrodynamic radius (Rh), and ?-potential for the polymers.
aCalculated from Equation (2), bEstimated from 1H NMR, cEstimated from GPC, dEstimated from DLS.

PIC micelles Mwa × 10-5 Rga Rhb Rg/Rh Naggc dPICd

?-potential

(mV)
(nm) (nm)
AEA/EM27 8.48 15.1 15.2 0.99 50 0.096 -0.88
AEA/EM53 189 36.6 41.0 0.89 735 0.109 -0.53
AEA/EM106 111 28.6 32.4 0.88 302 0.129 -0.20
Table 2: Dynamic and static light scattering data for PIC micelles in 0.1 M NaCl.
aEstimated by SLS in 0.1 M NaCl, bEstimated by DLS in 0.1 M NaCl, cAggregation number of PIC micelles calculated from Mw(SLS) of PIC micelles determined by SLS and Mw of the corresponding unimers determined by 1H NR and GPC, dDensity calculated from Equation (3).

Citation: Fankhauser GT (2018) Beyond Surgical Outcomes Research: Value-based Surgery. J Surg Curr Trend Innov 1: 004.