In-Vitro Investigation of the Cytotoxic and Genotoxic Effects of Benzimidazole Group Pesticides Benomyl and Carbendazim

Mehtap Kara*, Ayşe Tarbın Jannuzzi1 and Şeyda Yön2

1Istanbul University Faculty of Pharmacy Department of Pharmaceutical Toxicology, Istanbul, Turkey
2Turkish Red Crescent Society, Kartal Hospital, Istanbul, Turkey

Abstract

Fungicides are the most effective method to control fungal microorganisms which cause plant diseases. The benzimidazole group of fungicides acts by inhibiting microtubule formation. Benomyl and its metabolite carbendazim are the most commonly used benzimidazole group systemic agricultural fungicides in developing countries. Benomyl is an important teratogenic agent, have toxic effects on male reproductive system and also on the nervous system due to the mechanisms that disrupt the microtubule organization are also frequently encountered. Carbendazim is also known aneugen fungicide. In our study, the cytotoxic effects of benomyl and its metabolite carbendazim were investigated by MTT and NRU tests on human neuroblastoma cell line (SH-SY5Y) and rat kidney epithelial cell line (NRK-52E) and their genotoxic effects were tested by Comet assay. According to the results of cytotoxicity in our study, the LC50 values in SH-SY5Y and NRK52E cell lines were 108.7μM and 25.7μM for benomyl, respectively; and 201.3μM and 1619.5μM for carbendazim, respectively. As a result of our cytotoxicity study, the doses to be used in the genotoxicity assessment were determined for benomyl and carbendazim in both cell lines. According to Comet assay results it has been observed that benomyl and carbendazim have genotoxic effects on SH-SY5Y and NRK52E cell lines.

*Corresponding author: Mehtap Kara, Istanbul University Faculty of Pharmacy Department of Pharmaceutical Toxicology, Istanbul, Turkey, Tel: +090 21214400000; E-mail: mehtap.kara@istanbul.edu.tr

Received: January 02, 2018; **Accepted:** January 29, 2019; **Published:** February 12, 2019

Copyright: © 2019 Kara M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Fungicides have been commonly used pesticides against fungal diseases in the aim of increase crop production. However adverse effects of fungicides on other species not yet clearly identified. It is important to understand mechanisms that play role under toxic effects for effective hazard identification and risk assessment, increase benefits of fungicides and also protect non-target species [1]. Benzimidazole fungicides have systemic effects and selectively disrupt tubulin biosynthesis through inhibit α and β tubulin dimerisation that cause disruption in fungal spindle fibril structures. Benomyl and its metabolite carbendazim are widely used benzimidazole fungicides against to crop fungi and believed that these fungicides are nontoxic to other species except male reproductive system [2].

Benomyl is metabolized into functionally active carbendazim and this metabolite is commonly used fungicide from farmers. Benomyl and carbendazim show their toxic effects by inhibiting mitosis through binding β tubulin subunits of microtubules [3-5]. Benomyl binds mammalian neuronal tubulins with low affinity and prevent polymerization of tubulins [6]. Due to weak and slow catalysis of carbendazim, its mostly retained in the tissues [7]. In mammalians, benomyl rapidly absorbed and metabolized through hydroxylation and hydrolysis in the liver and excreted into urine and feces [8]. Carbendazim; absorbed as high as 80-85% after oral exposure and then metabolizes many molecules [7]. Benomyl and carbendazim have several adverse effects as male reproductive system disructions, teratogenicity, neurodegeneration, dermal sensitisation, tubular degeneration in kidney, liver toxicity, endocrine disruption and cancer [9-15]. There is only one study about benomyl toxic effect on SH-SY5Y cells in the literature and no data about carbendazim cytotoxic and genotoxic effect on SH-SY5Ycells [16], and therewithal there is no data on NRK52E cell line. In this study the aim was to investigate cytotoxic and genotoxic effects of benomyl and carbendazim commercial products on SH-SY5Y and NRK52E cell lines.

Materials and Methods

Cell culture and cytotoxicity assays

Pilben 50 (benomyl) and Derosal 50 (carbendazim) commercial products were used for exposures. To evaluate cytotoxic effects of benomyl and carbendazim, MTT (3-(4,5-dimetil-2-tiazolil)-2,5-difenil-2H-tetrazolium bromür) and NRU (Neutral Red Uptake) tests were performed on Human neuroblastoma SH-SY5Y cell (ATCC, CRL-2266) and rat kidney epithelial NRK52E cell (ATCC, CRL-1571) cells. Exposure doses were shown in table 1.

The MTT test is an in vitro cytotoxicity test on the basis of a cell culture that aims to assess cell growth and/or cell death indirectly. This method is based on the principle that mitochondrial enzyme succinate dehydrogenase break of tetrazolium ring in MTT dye and spectrophotometrically measure at 590nm. Neutral Red is an in vitro cytotoxicity test which is based on Neutral Red (3-Amino-7-di-methylamino-2-methylphenazine hydrochloride) intake by viable cell
lyosome. Accumulation of dye in lysosomes is directly proportional to the cell number.

<table>
<thead>
<tr>
<th>NRK-52E MTT Exposure Doses (µM)</th>
<th>Benomyl 10-100</th>
<th>Carbendazim 50-1100</th>
<th>SH-SY5Y MTT Exposure Doses (µM)</th>
<th>Benomyl 6.25-250</th>
<th>Carbendazim 25-350</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRK-52E NRU exposure doses (µM)</td>
<td>Benomyl 10-100</td>
<td>Carbendazim 500-1100</td>
<td>SH-SY5Y NRU exposure doses (µM)</td>
<td>Benomyl 25-250</td>
<td>Carbendazim 100-350</td>
</tr>
</tbody>
</table>

Table 1: MTT and NRU test exposure doses.

The rat kidney proximal tubular epithelial cell line (NRK-52E) and Human Neuroblastoma Cell line (SH-SY5Y) were obtained from American Type Culture Collection (ATCC, Manassas, VA). The cells were grown at 37°C in a humidified incubator with 5% CO₂ in Dulbecco’s Modified Eagles medium consisting of nutrient mixture F12 (DMEM/F12) supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS) and 1% antibiotic (100U/mL penicillin and 100µg/mL streptomycin).

NRK-52E and SH-SY5Y cells were seeded at 10⁴ cells into each well of 96-well plates following disaggregation of cells with trypsin/EDTA. After 24h, the cells were exposed to benomyl and carbendazim doses shown in table 1. After 24h incubation period, cytotoxicity was assessed using MTT test. Optical densities (OD) of each well were determined at 590nm and compared, against at a reference wavelength of 670nm, using a microplate spectrophotometer system (Epoch, Erlangen, Germany). 1% DMSO were used as solvent control for all assays. All concentrations were tested in triplicates and each test was repeated triple. The absorbance values of samples were compared with those of the solvent controls (1% DMSO) after all values were corrected by subtracting the absorbance value of a blank (negative control). The cytotoxic activity was expressed as an IC50, the concentration of extracts that caused a 50% inhibition of enzyme activity in the cells.

For NRU test a total of 10⁴ cells/well were plated in 96 well tissue-culture plates. After 24h incubation the cells were exposed to benomyl and carbendazim doses were shown in table 1. The cells were incubated for 24h at 37°C in 5% CO₂, then the medium was discarded. The cells were washed twice with PBS and incubated for an additional 3h in the medium supplemented with NR (50µg/mL). The cells were rinsed five three with PBS and 200µl of “fixation solution” (50% ethanol, 1% acetic acid, and 49% distilled water) was added to each well to fix the cells and bring NR into solution. The plates were shaken for 20min, and the absorbance of the solution in each well was measured in a microplate reader at 540nm using a microplate spectrophotometer system (Epoch, Erlangen, Germany). Results were expressed as the mean percentage of cell growth inhibition from three independent experiments. IC50 values represent the concentrations that reduced the mean absorbance 50% of those in the untreated cells.

Microscopic slides were covered with 0.5% Normal Melting Agarose (NMA) at about 45°C in Ca²⁺ and Mg²⁺ free PBS. Cells were mixed with 75µl of 0.5% LMA and the cell suspension was rapidly pipetted onto the first agarose layer, spread out with a coverslip and maintained on an ice-cold flat tray for 5min to solidify. After removal of the coverslip, the slides were immersed in cold lysing solution (2.5M NaCl, 100mM Na₂EDTA, 10mM Tris, 1% sodium sarcosinate, pH10) with 1% Triton X-100 and 10% DMSO added just before use, for at least 1h at 4°C. Electrophoresis was performed with 200mA at 4°C for 20min. For neutralization 0.4M tris-HCl buffer (pH7.5) buffer administered 3times for 5min. For slide examination 20mg/mL ethidium bromide was used and slides were examined underfluorescent microscope (Olympus BX53, Olympus, Tokyo, Japan) at 40x (40x10) magnification by using an automated image analysis system (Comet Assay IV, Perceptive Instruments, Suffolk, UK). DNA damage to individual cells was expressed as a percentage of DNA in the comet tail (% TDNA, tail intensity). Protocol was performed in triplicate to ensure reproducibility.

Genotoxicity assays

For genotoxicity assay the alkaline comet assay was performed [17]. Human neuroblastoma SH-SY5Y cell (ATCC, CRL-2266) and rat kidney epithelial NRK52E cell (ATCC, CRL-1571) were seeded in 6-well plates before the treatment at 5x10⁵ cells per well. Benomyl and carbendazim exposure doses on NRK52E and SH-sy5y cells were shown in table 2. The viability of cells was checked via trypsin blue dye method and cells viability was ≥80% in all concentrations.

<table>
<thead>
<tr>
<th>NRK-52E Cell Line Exposure Doses</th>
<th>Benomyl 10µM</th>
<th>5µM</th>
<th>2.5µM</th>
<th>1.25µM</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbendazim 900µM</td>
<td>450µM</td>
<td>225µM</td>
<td>112.5µM</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>SH-SY5Y Cell Line Exposure Doses</td>
<td>Benomyl 60µM</td>
<td>30µM</td>
<td>15µM</td>
<td>7.5µM</td>
<td>Control</td>
</tr>
<tr>
<td>Carbendazim 100µM</td>
<td>50µM</td>
<td>25µM</td>
<td>12.5µM</td>
<td>Control</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Comet test exposure doses.

Results

Cytotoxicity results

The IC50 values of benomyl and carbendazim in the NRK52E and SH-SY5Y cells were calculated via MTT. IC50 values of benomyl on NRK52E and SH-SY5Y cells were 25,78µM and 108,7µM. IC50 values of carbendazim on NRK52E and SH-SY5Y cells were calculated via MTT. IC50 values of benomyl on NRK52E and SH-SY5Y cells were 25,78µM and 108,7µM. IC50 values of carbendazim on NRK52E and SH-SY5Y cells were 1619,47μM and 201,27μM (Figure 1). % inhibition values with NRU assay were shown in figure 2.
Genotoxicity results

The tail intensity parameters were evaluated from the comet test, after exposure of benomyl and carbendazim on SH-SY5Y and NRK52E cells. In SH-SY5Y cells, benomyl increased DNA damage in 30 and 60µM dose groups compared to control (p<0.05). There were no significant differences between groups in NRK cells. There were no significant differences between groups with carbendazim exposure in SH-SY5Y cells, however in NRK cells DNA damage significantly increased dose dependently (p<0.05) (Table 3 and 4).

Discussion

The benzimidazole pesticides benomyl and its main metabolite carbendazim, are fungicides that target to microtubules and inhibit microtubule assembly and perturbing microtubule formation so this resulted with chromosomal assembly disruptions. It has been reported that carbendazim inhibit mitosis by disrupting the polymerization of mammalian tubulin into microtubules and arrest the cell cycle at the G2/M phase in turn induce apoptosis. Benomyl and carbendazim are worldwide used antifungal pesticides. It has been shown in different studies that benomyl and carbendazim cytotoxic effects on pancreas, prostate, colon and breast tissues. And also carbendazim have role on immun system deregulation [18-20].

In our study we found that the IC50 values of benomyl on NRK52E and SH-SY5Y cells were 25.78±μM and 108.7±μM and carbendazim were 1619.47±μM and 201.27±μM. DNA damage increased dose dependently with benomyl and carbendazim in NRK cells and in SH-SY5Y cells DNA damage increased in 30 and 60µM groups compared to control. There are different studies in the literature about cytotoxic and genotoxic effects of benomyl and carbendazim on different cells. Chang et al. [20], showed cell proliferation inhibition in human endometrial cells of benomyl and carbendazim with dose dependent. Laryae et al. [18], showed that benomyl have more potent cytotoxic effect than carbendazim on T-cell leukemia, multiple myeloma, small cell lung cancer, renal adenocarcinoma, cervical adenocarcinoma, normal retinal epithelial cells and LNCaP cells. In LNCaP cells IC50 values of benomyl and carbendazim were reported as 15±5.7 and 50±9.0 μmol/l. In another study in cultured rat hepatocytes 35ug/ml benomyl decreased 49% cell viability [21]. Dierickx [22], reported benomyl and carbendazim’s IC50 values in HepG2 cells are 203μM and >1750μM and in Fa32 cell 205μM and >1750μM neutral red uptake inhibition assay. In this study Dierickx classified benomyl more toxic chemical compared to carbendazim, quinalphos, carbaryl, piperonyl butoxide and 1-Aminobenzotriazole.

In another study with benomyl effects on 16HBE14o-(16HBE) human bronchial epithelial cells results indicated that IC50 values of benomyl administration for 24 or 48h are 44.2 and 7.2μM [23]. In human placental trophoblast cell line (HTR-8), compared to control group 2.5 and 5μM benomyl doses reduced cell viability by 5.79% and 6.49% and 5μM carbendazim dose decreased viability by 5.17% [24].

<table>
<thead>
<tr>
<th>SH-SY5Y Groups Mean ±SD</th>
<th>P Value</th>
<th>NRK Groups Mean ±SD</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 3,774±0,632</td>
<td></td>
<td>Control 4,184±0,377</td>
<td></td>
</tr>
<tr>
<td>7.5µM 3,191±0,607</td>
<td>>0.05</td>
<td>1.25µM 5,291±0,617</td>
<td>>0.05</td>
</tr>
<tr>
<td>15µM 4,712±1,372</td>
<td>>0.05</td>
<td>2.5µM 5,669±0,364</td>
<td>>0.05</td>
</tr>
<tr>
<td>30µM 5,2349±0,522</td>
<td>>0.05*</td>
<td>5µM 4,959±0,950</td>
<td>>0.05</td>
</tr>
<tr>
<td>60µM 6,306±0,344</td>
<td>>0.05*</td>
<td>10µM 3,514±0,238</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Table 3: Tail intensity values of Benomyl on SH-SY5Y and NRK cells. Note: *significantly increased compared to control group.

<table>
<thead>
<tr>
<th>SH-SY5Y Groups Mean±SD</th>
<th>P Value</th>
<th>NRK Groups Mean±SD</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 3,774±0,632</td>
<td></td>
<td>Control 6,467±0,336</td>
<td></td>
</tr>
<tr>
<td>12.5µM 4,235±1,393</td>
<td>>0.05</td>
<td>112.5µM 8,926±1,230</td>
<td>>0.05*</td>
</tr>
<tr>
<td>25µM 3,869±0,772</td>
<td>>0.05</td>
<td>225µM 9,787±0,604</td>
<td>>0.05*</td>
</tr>
<tr>
<td>50µM 5,224±0,683</td>
<td>>0.05</td>
<td>450µM 12,45±0,932</td>
<td>>0.05*</td>
</tr>
<tr>
<td>100µM 5,260±1,453</td>
<td>>0.05</td>
<td>900µM 12,19±0,219</td>
<td>>0.05*</td>
</tr>
</tbody>
</table>

Table 4: Tail intensity values of Carbendazim on SH-SY5Y and NRK cells. Note: *significantly increased compared to control group.
Benomyl and carbendazim classified as IARC group 2B possible human carcinogens. Benomyl is an aneugenic pesticide that disrupt microtubule formation. Benomyl causes micronuclei formation during cell division mechanism. It has been reported that 3.2-4.1 mM benomyl concentrations associated with chromosomal abnormalities [25]. Lebailly et al. [26], reported that, benomyl administration in human peripheral blood lymphocytes up to 500μM did not increase DNA damage with Comet Assay. 1000mg/kg benomyl induces DNA damage in Japanese quails [27]. It has been demonstrated in several different studies that carbendazim induce DNA damage in different species as Daphnia magna, Eisenia fetida earthworms, Donax faba, mice, rats, in human lymphocytes. In D.magna species it has been demonstrated with comet assay that carbendazim induce DNA damage cumulative and were seen in all the generations with multigenerational study. In another study, carbendazim induce DNA damage with duration dependent in Eisenia fetida earthworms [26-32].

In conclusion, our in-vitro study results in accordance with different studies about benomyl and carbendazim’s cytotoxic and genotoxic effects. While benomyl and carbendazim usage restricted in many countries, their usage still continue in many developing countries. Thus detailed studies on these fungicides about its usage currency, accumulation in the environment, detailed mechanistic studies on their toxic effects should be clarified with further studies.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

