
Introduction

 The cerebellum is particularly susceptible to toxic insults due to 
its complex and highly metabolic nature. Purkinje and granule cells 
are the most frequently damaged cerebellar cells due to toxic agents 
upon pathologic evaluation [1]. The purkinje cells are the sole output 
fibers from the cerebellar cortex and provide inhibitory input to the 
cerebellar nuclei [2]. The granule cells are the only excitatory cell 
in the cerebellar cortex and help to form the complex network of 
connections intrinsic to the cerebellum. The cerebellum is a complex 
structure containing up to half of the neurons in the central nervous 
system [3-5].Although cerebellar findings are commonly encountered 
by the practicing neurologist, when acute and lesional causes of ataxia 
are ruled out, toxin-induced ataxia should be highly suspected. Toxic  
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cerebellar syndromes can be separated into three major categories: 
prescribed medications, drugs of abuse, and environmental expo-
sures. Many medications can produce ataxic syndromes, including 
antiepileptics, antiarrhythmics, antineoplastics and antibiotics, which 
form the highest risk agents. The risk of developing ataxia from these 
agents is dependent on the dose and rate of increase. Furthermore, 
age, renal function, and drug—drug interactions can predispose-
drug-induced ataxia. Those with prior cerebellar damage are also 
more likely to have symptomatic worsening following new drug ad-
ministration or uptitration. The neurologic examination is important 
in confirming a cerebellar origin of ataxia and can also be useful in 
determining underlying etiology. Neurologic examination will often 
reveal an ataxic gait with truncal titubation, saccadic abnormalities, 
dysmetria, intention tremor and dysdiadochokinesia. Speech can also 
be involved with an ataxic dysarthria comprised of disturbances of 
speech prosody and articulation [6,7]. Tone is frequently reduced, 
often with pendular reflexes following cerebellar insult [8]. Sensory 
ataxia will usually present with predominant gait disturbance wors-
ened with the loss of vision and a positive Romberg’s sign. Particular 
drugs or toxins will often have a predisposition to preferentially affect 
only a portion of the cerebellum and thus produce unique clinical cer-
ebellar symptoms. Although the differential for acute cerebellar ataxia 
is broad and includes etiologies such as ischemic and inflammatory 
insults, this review will focus on acute toxin-induced cerebellar atax-
ia.

Antiepileptics
Phenytoin

 The antiepileptic medication with the highest risk of producing 
ataxia and cerebellar dysfunction is phenytoin [9]. The risk is dose 
dependent with a tendency for patients at a lower dose to develop 
nystagmus and truncal ataxia, whereas appendicular ataxia becomes 
more prominent at higher dosing [10]. Toxicity is dependent upon the 
unbound plasma concentration of phenytoin and drug levels are sen-
sitive to physiologic changes such as hypoalbuminemia, malnutrition, 
and kidney injury [11]. Furthermore, serum phenytoin levelsneeds to 
be corrected if the serum albumin level is low because of its binding 
characteristics11. Up to 37% of patients on chronic phenytoin devel-
opataxia [9]. The presence of mild nystagmus is frequent and occa-
sionally can be used as an indicator of compliance with medication. 
Most patients on phenytoin at a therapeutic level have nystagmus and 
this tends to become increasingly prominent as the serum level exceeds 
20 mg/mL10. Other adverse events due to chronicexposure include 
gingival hyperplasia and drug reaction with eosinophilia and systemic 
symptoms (DRESS). Dangerous skin manifestations of acute intrave-
nous use include purple hand syndrome, Stevens-Johnson syndrome, 
toxic epidermal necrolysis and ischemia of the skin [12]. CYP2C9 
and CYP2C19 are both involved in phenytoin metabolism and genetic 
polymorphisms increase the risk of ataxia in this subset of the pop-
ulation [13]. CYP2C9 mutations can lead to a reduction of the phe-
nytoin metabolic rate by 25-54%13. Due to their alterations in drug 
metabolism, these patients show reduced volumes of cerebellar white 
matter and trends towards reduced cerebellar gray matter compared 
to normal phenytoin metabolizers14. Although somewhat conflicting  
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Abstract
 Ataxia is the inability to coordinate voluntary movement and 
can present with a variety of symptoms involving dyscoordination 
of gait and extremity movement, slurred speech, and abnormal eye 
movements.  Ataxia can be divided into either cerebellar or sensory. 
Cerebellar ataxia originates from damage to the cerebellum or its 
connecting tracts, while sensory ataxia is a result of damage to the 
afferent sensory pathways such as the dorsal column and large my-
elinated proprioceptive fibers.
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in studies, duration and dose of phenytoin use are likely related to the 
degree of cerebellar atrophy [14].Management of phenytoin toxicity 
involves withdrawal of the agent. It is important to recognize thatwith 
cessation of treatment, some patients recover completely with resolu-
tion of the cerebellar dysfunction, whereas some may suffer from per-
manent cerebellar impairment [15]. Neuropathologic examinations of 
these patients have demonstrated widespread loss of Purkinje cells, a 
decline in the population of granule cells, and Bergmann gliosis with 
relative sparing of basket cell axons [16].

Carbamazepine, Oxcarbazepine, Eslicarbazepine

 Carbamazepine, oxcarbazepine, and eslicarbazepine all pose sig-
nificant risks of producing cerebellar ataxia9. Toxicity of these agents 
produces nystagmus, ataxia, disequilibrium, headache and potential-
ly alterations in mental status [12]. In a review of randomized pla-
cebo-controlled trials, oxcarbazepine had the highest absolute risk 
increase of producing ataxia, with patients being at 23 times higher 
risk of developing ataxia compared to placebo9.In the same study, 
thenumber needed to harm was less than ten [9]. In a systematic re-
view of cohort studies, carbamazepine more frequently produced 
ataxia and dizziness than oxcarbazepine. Likely both agents are high-
er risk for this side effect than eslicarbazepine. All three agents appear 
to produce a largely dose-dependent level of nystagmus, action trem-
or and gait ataxia [10]. These side effects may be more common in the 
elderly or those with prior cerebellar insults [10,12]. Carbamazepine 
is a medication that may be combined with lithium, another cerebel-
lotoxic agent, for mood control. The combination of these drugs can 
produce symptoms even when both medications are within therapeu-
tic levels10. Clinicians should also be aware that certain medicines 
that are CYP3A4 inhibitors suppress carbamazepine metabolism and 
increase its serum concentration [13,14]. Some of the more common 
agents include clarithromycin, fluoxetine, verapamil, oxybutynin, 
valproic acid, and loratadinec [15,16]. Severe carbamazepine toxicity 
can be deadly and lead to coma. If ataxia develops, free drug levels 
should be checked, and the medication reduced or discontinued. Per-
sistent ataxia after medication discontinuation is rare and there should 
not be underlying damage to the cerebellum after cessation of the 
medication.

Lacosamide

 In a randomized placebo-controlled trial of adjuvant lacosamide, 
with doses ranging from 200mg to 600mg per day, patients demon-
strated a largely dose dependent increase in dizziness, headache, nau-
sea, ataxia, nystagmus and diplopia [17].

 The prevalence of ataxia was 23% among patients taking lacos-
amide 600mg per day, 13% in those taking 400 mg per day, 4% in 
those taking 200 mg per day and only 3% in those receiving place-
bo [17]. These effects led to higher patient discontinuation of lacos-
amide, particularly at higher doses, as compared to placebo. In this 
study lacosamide had minimal effects on other concurrent antiepilep-
tic concentrations compared to placebo.

 In a phase III long term follow up trial of adjuvant lacosamide 
therapy for partial onset seizures, 10.7% of patients withdrew due 
to adverse effects, with the most common being dizziness (in 1.6% 
of patients) [18]. This study was conducted in a population who had 
previously tolerated the medication at variable doses during a prior 
double blinded placebo-controlled trial. Lacosamide induced ataxia is 
most likely to occur with medication initiation or dose adjustment and 
management often requires a dose reduction [17,18].

Lamotrigine

 Lamotrigine is a medication that inhibits voltage-gated sodium 
channels, thereby stabilizing neuronal membranes and reducing glu-
tamate release. Lamotrigine has been associated with severe dermato-
logic reactions, often requiring slow titration of the medication.How-
ever, cerebellar symptoms are more common. In a review of prior 
randomized controlled drug trials, the most frequent adverse events 
related to lamotrigine use were ataxia, nausea, diplopia and dizziness. 
The relative risk of diplopia was the highest amongthe adverse events 
at 3.79, while the relative risk of ataxia was 3.34 [19]. In this review, 
ataxia developed in 15% of patients as compared to only 4.5% in 
placebo groups [19].

Valproic Acid

 Valproic acid rarely causes ataxia as a direct adverse effect.How-
ever, its effects on the metabolism of other medications and the risk 
of encephalopathy from hyperammonemia have be known to produce 
ataxia [9,20]. Valproic acid can produce encephalopathy either byaf-
fecting hepatic function or precipitation of hyperammonemia. When 
hyperammonemic encephalopathy due to valproic acid occurs with 
normal hepatic function it is known as valproate-induced non-hepat-
ic hyperammonemic encephalopathy (VNHE) [21]. The features of 
this form of encephalopathy include irritability, drowsiness and coma, 
with movement symptoms of asterixis and cerebellar ataxia. Manage-
ment of valproate induced hyperammonemia includes dose reduction 
or potential L-carnitine supplementation [22].

Benzodiazepines and Barbiturates

 Benzodiazepines function by increasing the frequency of opening 
of chloride channels on GABA-A receptors, thereby reducing neu-
ronal hyperexcitability. These medications, especially at high doses, 
produce ataxia to varying degrees depending upon the specific agent 
used9. This is more common in children, who present with a mild and 
reversible ataxia.Benzodiazepines do not appear to have a direct toxic 
effect on the cerebellum. 

 Barbiturates decrease cellular excitability by prolonging the open-
ing of chloride channels on GABA-A receptors. Toxicity isdose-de-
pendent and produces a neurologic syndrome mainly manifesting 
with central nervous system depression.Other potential symptoms 
includeintention tremor, gaze-evoked nystagmus and gait ataxia due 
to cerebellar involvement [10,12,23].Up to 5% of epileptic patients 
receiving phenobarbital will develop cerebellar signs. Thiopental is 
another barbiturate with a high prevalence of ataxia, occurring in up 
to 12.7% in one review study [9].

Other Antiepileptics

 A variety of other antiepileptic agents have been known to pro-
duce ataxia as a prominent side effect. Gabapentin functions on cal-
cium channels to enhance GABAergic inhibition of neuronal firing.  
It commonly produces a reversible ataxic syndrome with one study 
demonstrating ataxia in 7.7% of patients taking adjuvant gabapentin 
for epilepsy23,24. Other common side effects included somnolence 
(29.3%), vertigo (7.2%) and asthenia (14.6%) [24]. Ataxia was not 
strongly dose dependent, with the majority of patients experiencing 
this symptom at doses less than 1200mg daily. Paradoxically, ga-
bapentin is occasionally used totry to reduce ataxia due to cortical 
cerebellar atrophy from a variety of inherited conditions [25]. It is 
believed that there is a relative deficiency of GABAergic activity that  
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occurs with Purkinje cell loss, producing ataxia that responds to ga-
bapentin or pregabalin administration25. Other medications altering 
GABAergic effects such as vigabatrin and tiagabine appear to cause 
similar degrees of ataxia9.Talampanel and zonisamide also have a 
high risk of producing cerebellar ataxia, with the absolute risk in-
crease being 23.53 and 8.33 respectively [9].

Antineoplastics
5-Fluorouracil

 Over the last several decades, 5- fluorouracil (5-FU), a pyrimidine 
analog, has been used as a chemotherapeutic agent for the treatment 
of various solid tumors such as gastrointestinal and pancreatic can-
cers, head and neck cancer, and breast cancers [26,27]. 5-FU is an 
antimetabolite that inhibits thymidylate synthase and blocks thymi-
dine formation by interfering with DNA synthesis28. Typically, 5-FU 
is used with other chemotherapy as part of a combination regimen 
[26,28].The most common side effects include bone marrow suppres-
sion, gastrointestinal side effects (diarrhea and stomatitis), alopecia, 
and hand-foot syndrome26,28. Cardiotoxicity has been described and 
is less common [29,30] while neurotoxicity is rare (occurring in less 
than 1% of patients treated with 5-FU) [31]. 

 In a study conducted with 1240 patients who were treated with 
5-FU either alone or in combination with other agents, only two pa-
tients had side effects of neurotoxicity [26]. There are several case 
reports of patients developing cerebellar ataxia, which is one of the 
most common forms of neurotoxicity noted [26,31-33]. Another de-
scribed neurological adverse effect is cerebellar syndrome, which 
can include cerebellar ataxia, dysphagia, and dysmetria, among other 
symptoms33. Peripheral neuropathy and even seizures can also be 
observed after treatment with 5-FU [32,33]. Acute neurotoxicity is 
dose related and can be self-limiting. However, there are some re-
ports of residual neurological symptoms even after several weeks of 
discontinuing 5-FU33. Using 5-FU in high doses (more than 2200 
mg/m2/week) or using it in combination with interferon alpha can in-
crease the incidence of neurotoxicity [28,34]. Although it is not very 
lipid-soluble, it can easily cross the blood-brain barrier28. A proposed 
mechanism of neurotoxicity hypothesizes that fluoroacetate, which is 
a byproduct of 5-FU catabolism, accumulates in nerve cells, causing 
impairment of the urea cycle and increasing ammonia levels28,34. 
Another possible mechanism proposes that 5-FU increases thiamine 
metabolism, causing thiamine deficiency [34-37].

Capecitabine

 Capecitabine is a prodrug of 5-FU that is converted preferentially 
in tumor tissue by thymidylate phophorylase, which is expressed in 
higher levels in tumor tissue38. It has been shown to have the ad-
verse effect of cerebellar syndrome, much like 5-FU, with ataxia, 
nystagmus, slurred speech, and encephalopathy [38,39]. The mech-
anism is unclear, but there have been reports of severe neurotoxicity 
in patients with reduced levels of dihydropyrimidine dehydrogenase 
(DPD), which is the rate-limiting enzyme in 5-FU catabolism [38-40]. 
Other possible mechanisms may be similar to the processes that cause 
cerebellar ataxia in patients receiving 5-FU [39]. This may impair 
the clearance of 5-FU, leading to higher concentrations of the drug 
for prolonged periods of time in the plasma and CSF, contributing to 
the toxicity38. However, there are case reports that argue that DPD 
deficiency may not always play a role, as some patients experience 
marked cerebellar ataxiawithout any other toxicities to suggest DPD  

deficiency41. Symptoms of ataxia and other forms of neurotoxicity 
have been seen 6-19 weeks after the medication is administered38. 
Many cases note that the symptoms resolve with discontinuation of 
the drug [41,42].

Cytarabine

 Cytarabine is a chemotherapeutic agent that is used alone and in 
combination to treat a variety of leukemias and lymphomas. It is a 
structural analog of deoxycytidine and is converted to uracil arabino-
side by cytidine deaminase [43]. Uracil arabinoside is then converted 
to the active form of the drug (ara-C triphosphate) and can diffuse 
into cells. Once intracellular, it competitively inhibits deoxycytid-
yl-triphosphate to inhibit DNA polymerase, DNA repair and RNA 
synthesis and DNA synthesis [43-45]. Neurotoxic manifestations 
with intrathecal cytarabine include headaches, meningismus, seizures 
and myelopathy 43,46. With systemic therapy, toxicity can present as 
seizures and cerebellar dysfunction. Acute cerebellar syndrome is the 
most common of the various neurotoxic profiles of cytarabine and is 
typically seen with use of high doses of the drug43. Signs and symp-
toms of cerebellar toxicity typically present three to eight days after 
starting high dose cytarabine (HIDAC), and can occur either during 
the first or subsequent cycles43. Patients present with truncal and/
or limb ataxia, nystagmus, dysmetria, dysdiadochokinesia, and dys-
arthria, as well as headaches, changes in mental status, and seizures 
[43,47-50].

 Cerebellar toxicity is dose related, and more dependent on the 
cumulative dose of cytarbine, as opposed to the duration of therapy 
[48-51]. Patients who are older than age 50, have prior neurologic 
dysfunction, renal or hepatic impairment are at higher risk of devel-
oping an acute cerebellar syndrome [43,49,52,53]. There is decreased 
clearance of cytarabine and its metabolites in patients with renal and 
hepatic dysfunction, leading to a longer duration of exposure [9,47]. 
The mainstay of treatment of cerebellar toxicity is discontinuation of 
cytarabine, and symptoms typically improve over the course of weeks 
to months [48,49]. However, in some patients, there may be residual 
symptoms even after discontinuation, with irreversible ataxia seen in 
16.7% of patients in one study [48,49,53]. Some patients were treated 
with dexamethasone for its anti-inflammatory effects, with improve-
ment in symptoms [47]. In many cases, work up of cerebellar symp-
toms, including CT scans, EEG, lumbar puncture, and MRI can be 
largely unrevealing [47]. In one case study, brain MRI did show dif-
fuse cerebellar high intensity lesions on T2 and hypointensity on T1, 
without gadolinium enhancement. Some brain MRI findings can be 
consistent with diffuse cerebellar atrophy [54]. In another case study, 
a PET scan showed decrease in the 18-FDG uptake in the frontal, 
parietal and temporal lobes, as well as in the cerebellum [12]. 

 In post-mortem analysis of patients who experienced cerebellar 
toxicity, there was noted to be degeneration of purkinje cells in the 
cerebellar hemispheres and the vermis [47,50]. Pathologic changes 
revealed reactive proliferation of glial cells, with patchy loss in the 
molecular and granular layers of the cerebellum [47,50]. One study 
showed the loss of purkinje cells in the deeper areas of the cortical 
sulci, with comparative preservation to purkinje cells at the folial 
crests and in the posterior inferior cerebellum [53].
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Immunosuppresants
Cyclosporine

 Cyclosporine and other calcineurin inhibitors are used to prevent 
rejection of organ transplants and in immunological diseases. Most 
commonly, a fine tremor can be noted as a side effect [23]. Cerebellar 
toxicity can be seen, along with aphasia, seizures, and paresthesias 
[23,55,56]. Cyclosporine produces a cerebellar syndrome with pre-
dominant nystagmus and postural instability [9]. It is hypothesized 
that the cerebellar toxicity is not associated with plasma concentra-
tions of the medication. Cyclosporine may expose silent cerebellar le-
sions or infarcts, causing ataxia and other cerebellar signs and symp-
toms [23]. These may occur months after cyclosporine is started, and 
may be worsened by hypomagnesemia. In a study of 12 bone marrow 
transplant patients that developed neurotoxicity with cyclosporine, 
25% had cerebellar ataxia [56]. Patients can be at higher risk if they 
are liver transplant recipients [23,57]. In many patients, brain MRI 
will show evidence of subcortical white matter lesions, consistent 
with a leukoencephalopathy [58-60]. Symptoms can begin a few days 
to months after initiation of therapy [23,58].

Tacrolimus

 Tacrolimus is an immunosuppressant that is used widely after 
transplantation to prevent rejection. Similar tocyclosporine, it has 
been reported to cause neurotoxicity that can present as cerebellar 
ataxia [23,58,61]. Symptoms are typically mild and transient, resolv-
ing with discontinuation of the drug.

Antiarrhythmics
Amiodarone

 Amiodarone is a commonly used antiarrhythmic in the treatment 
of supraventricular and ventricular arrhythmias. Amiodarone has 
many well-known toxicities, including thyroid toxicity, pulmonary fi-
brosis, dermatological side effects, corneal deposits, and hepatotoxic-
ity [62,63]. Amiodarone can also be neurotoxic in 20-54% of patients 
and can cause a postural tremor, parkinsonism, peripheral neuropathy 
and cerebellar deficits [23,62,64]. Cerebellar deficits can include trun-
cal or limb ataxia, wide-based gait, axial hypotonia, nystagmus, ver-
tigo, dysdiadochokinesia, dysmetria, dysarthria, and dysphagia [62-
64]. Neurological workup including head CT, brain MRI, and EMG 
may be unrevealing 63,64. Approximately 5-7% of patients treated 
with amiodarone develop cerebellar toxicity [10,23,64]. In one study 
of 54 patients treated with amiodarone for ventricular arrhythmias, 
54% had neurotoxicity [65]. Among those who develop cerebellar 
toxicity, 52% will develop cerebellar symptoms within one month 
of therapy initiation, and in another 26% symptoms develop in 1-4 
months [64-65].

 Symptoms may improve with discontinuation of amiodarone over 
months to years, while in some cases residual symptoms do not resolve 
[62,64,65]. In one case report, symptoms improved with reduction 
amiodarone dosing by 50%, and resolved once the medication was 
stopped. Another case report showed that intravenous amiodarone can 
cause an acute cerebellar toxicity, which resolved quickly after the 
discontinuation of the drug [66]. In older patients, it may be safer to 
use lower doses of amiodarone to prevent toxicity62. Patients are at 
increased risk with advancing age, diabetes, renal failure, and alco-
holism [62-68]. The mechanism of cerebellar toxicity is unclear, but 
may be due to amiodarone penetrating nerve tissue and accumulating  

in lysosomal structures, creating lipid inclusion bodies in nerve cells. 
The mechanism of peripheral neurotoxicity of amiodarone has been 
thought to be due to axonal demyelination of peripheral nerves [69-
70] and due to lysosomal lipid deposits that can be caused by the 
action of amiodarone on lysosomal metabolism [71,72].

Procainamide

 Procainamide, which is used to treat cardiac arrhythmias, can 
cause cerebellar toxicity with acute cerebellar ataxia when used in 
high doses23,73. Onset of symptoms can be acute, appearing when 
serum concentration of the medication rises rapidly [73]. These symp-
toms typically resolve when procainamide is discontinued [23,73]. 
Other well-known side effects of procainamide include drug-induced 
lupus, agranulocytosis, rash, Raynaud’s disease, induction of ar-
rhythmias, and QRS and QT prolongation [73,74]. In one case study, 
symptoms of ataxia began 10 days after initiation of procainamideand 
resolved 3 days after discontinuation [73].

Propafenone

 Propafenone is anantiarrhythmic associated with dose dependent 
ataxia. Symptoms often resolve with lowering of the dose or cessation 
of the mediation [75].

Antimicrobials
Metronidazole

 Metronidazole can cause cerebellar toxicity when used for a 
prolonged duration of treatment, typically over 6 weeks to several 
months [76,77]. Symptoms can include ataxia, paresthesias, slurred 
speech, hypotonia, seizures, and nystagmus [76,77]. Brain MRI can 
show evidence of toxicity with hyperintensities on T2 and FLAIR in 
the dentate nuclei, nodularity in the cerebellar parenchyma on T2, or 
cerebellar edema with increased diffusion coefficients [76-80]. Other 
brain MRI findings can include abnormalities in the Guillian-Mol-
laret triangle, inferior olivary nuclei, central tegmental tracts, dorsal 
medulla and dorsal pons [81,82]. In one study, brain SPECT showed 
lower perfusion of the left cerebellar hemisphere, in addition to T2 
abnormalities in the dentate nuclei on brain MRI [83]. However, some 
patients may not have any abnormalities on brain imaging [84].

 There is increased risk of toxicity with higher cumulative doses of 
25 to 1080 grams [78]. In a study of 793 cancer patients who received 
metronidazole, two developed cerebellar dysfunction [85]. In patients 
that received a cumulative dose of more than 30 grams, 8.6% de-
veloped metronidazole neurotoxicity [85]. In patients with alcoholic 
liver disease, serum concentrations of metronidazole may be high-
er and contribute to neurotoxicity86. Both the symptoms and MRI 
abnormalities are reversible after discontinuation of metronidazole. 
Symptoms resolve in 24 hours to 2 weeks after stopping the drug 
[78,81,87]. Methylprednisolone has been used to promote neurologi-
cal improvement [88]. 

 While the mechanism of cerebellar toxicity is unclear, one hypoth-
esis suggests that metronidazole causes an acute toxic insult leading 
to localized vasogenic edema and axonal swelling [78,80]. In rat 
models, high doses of metronidazole cause cerebellar lesions78,80. 
In dogs, metronidazole administration for prolonged periods was as-
sociated with Purkinje cell damage.

C:\Users\Divya\Downloads\10.24966\ACC-8879\100084


Citation: Kidd CJ, Kathari YK, Dalton K, Hack N (2023) Drug and Toxin-Induced Cerebellar Ataxias. J Anesth Clin Care 10: 084.

• Page 5 of 11 •

J Anesth Clin Care ISSN: 2378-8879, Open Access Journal
DOI: 10.24966/ACC-8879/100084

Volume 10 • Issue 2 • 100084

Mefloquine

 Mefloquine is used for malaria prophylaxis and treatment. In an 
acute intoxication, patients may develop fevers, headaches, dizziness, 
nausea, gait instability and other neuropsychiatric symptoms [89]. Fe-
male patients and those with lower BMI may be at higher risk [89-91]. 
Proposed mechanisms of toxicity include interfering with calcium ho-
meostasis in neurons, inhibiting acetylcholinesterase, and inhibiting 
potassium ATP channels [89,92,93]. Treatment is to discontinue the 
drug and refrain from future use [23].

Isoniazid

 Isoniazid is used as part of a treatment regimen for tuberculosis. 
Common side effects are caused by its interaction with vitamin B6 
and include peripheral neuropathy. Some reports describe the onset 
of tremors, vertigo, slurred speech, nystagmus and limb and truncal 
ataxia weeks to months after initiation of treatment with isoniazid 
[94,95]. These symptoms improve with stopping the medication and 
treating with pyridoxine [94,95]. At doses higher than 6 mg/kg, atax-
ia, seizures, dizziness, and slurred speech have been seen, but it is 
unclear if this is due to cerebellar toxicity [23]. In one case report, 
brain MRI showed evidence of bilateral dentate nuclei lesions [96]. 
Chronic kidney disease may be a risk factor to developing neurotox-
icity [96].

Lindane

 Overuse of lindane, which is used in the treatment of scabies and 
lice, can cause hyperreflexia, hypertonia, limb and truncal ataxia and 
seizures [23,97]. Toxicity may be due to its interaction with GABA-B 
receptors in the cerebellum [98].

Other Medications
Lithium

 The neurotoxic effects of lithium were known long before its 
use for mood disorders [99,100]. After its introduction for the man-
agement of psychiatric disorders in 1949, cases of both chronic and 
acute lithium induced neurotoxicity were described and some cases 
of toxicity have led to permanent ataxia despite medication removal 
[101-103]. Lithium toxicity often manifests with tremor and ataxia 
and may occur acutely, subacutely or with chronic medication use.  
Most commonly, ataxia will present subacutely and correlate with 
supratherapeutic concentrations of lithium9.  Even at therapeutic 
levels, toxicity can occur due to cerebellar neuronal tissue reten-
tion of lithium [100]. Acute lithium toxicity may also be associated 
with other neurologic manifestations including altered mental status, 
seizures, parkinsonism and enhanced reflexes10. Acute or chronic 
toxicity can lead to the syndrome of irreversible lithium-effectuated 
neurotoxicity or SILENT [100]. Cases of SILENT often have pre-
dominant cerebellar symptoms however cognitive impairment and 
extrapyramidal symptoms may be present. In a review of cases of 
SILENT, the average dose at which toxicity occurred was 1403mg/
day, although toxicity could be seen in doses as low as 438mg/day.  
Patient age does not appear to correlate to the risk of permanent neu-
rologic injury following lithium toxicity [104]. The mean serum con-
centration at which SILENT occurred in one study was 2.29mM/L 
[100,104]. Long lasting neurotoxicity may be more likely when used 
in combination with other drugs such as haloperidol, thioridazine, 
phenytoin, and chlorpromazine. Persistent neurologic symptoms are 
highly variable but commonly include ataxia, nystagmus, dysarthria  

and extrapyramidal symptoms. Subcortical dementia, hyperreflexia, 
choreoathetoid movements and extensor plantar responses may also 
be present. Rare cases of optic neuritis and osmotic demyelination 
have been described following lithium toxicity [105,106]. Acute in-
toxication will often present with leukocytosis without clear infection 
and altered mental status. As cognitive status improves, cerebellar 
ataxia becomes apparent. An irregular coarse limb tremor can also be 
useful in identifying the lithium toxidrome. The majority of cases of 
acute lithium toxicity will improve with dose reduction or cessation 
of the medication. Toxic metabolic insults can alter previously well 
controlled lithium levels and should be evaluated when a new lithium 
toxidrome develops without dose change. 

 Cases of SILENT can be very prolonged however most patients 
have at least partial improvement with time. Although the mechanism 
of neurologic injury is unclear, pathologic reviews of SILENT have 
demonstrated cerebellar atrophy, Purkinje cell loss, cerebellar glio-
sis, and demyelination at other central and peripheral nervous system 
sites [107-109]. Lithium toxicity is best avoided by strict monitoring 
and regular dose adjustments. Toxicity treated with early hemodialy-
sis may reduce the risk of long-term neurologic sequelae.

Bismuth

 Bismuth has been used in various formulations to treat skin and 
gastrointestinal disorders, especially in the treatment of Helicobacter 
pylori infections. Rare cases of chronic daily bismuth use have pre-
sented with ataxia, cognitive changes, tremors, myoclonus and sei-
zures [23,110]. Prior high dose formulations in Australia and France 
increased the frequency of this syndrome. Regular and excessive 
use of over-the-counter bismuth formulations, such as peptobismol, 
can rarely present with toxicity [111]. This syndrome can mimic 
Creutzfeld-Jacob disease due to the severity of spontaneous, reflex-
ive and movement-induced myoclonus. The mechanism of toxicity 
is not clear. Bismuth-induced ataxia is often preceded by a subacute 
progressive encephalopathy. Symptoms improve slowly with cessa-
tion of bismuth however permanent deficits in cognition may remain. 
Those with chronic kidney disease are at higher risk for toxic effects 
[112]. Cerebellar toxicity can be worsened in setting of hypoxia, caus-
ing Purkinje cell loss [113].

Drugs of Abuse
Alcohol

 Alcohol adversely effects GABAergic transmission, producing 
cerebellar ataxia due to its effects of granule cells in the cerebellum 
[10]. Alcohol may increase GABA release from the Golgi cells of 
the cerebellum producing increased GABAergic inhibition of granule 
cells. Increased granule cell tonic inhibition produces motor incoor-
dination. The exact mechanism is complex and currently being inves-
tigated [2,10]. Ethanol may further disrupt the mossy fiber-granule 
cell-Golgi cell synaptic site leading to ataxia [2]. Alcohol intoxica-
tion produces a rostral vermis cerebellar syndrome characterized by 
wide based ataxic gait with truncal titubation and relative sparing of 
extremity coordination. Dysarthric speech is often present, but hy-
potonia may be lacking [114]. Motor coordination issues develop at 
doses as low as 0.08g/L due to early cerebellar effects [115]. Older 
age correlates with earlier cerebellar coordination dysfunction at low-
er serum alcohol concentrations, allowing young adults to be able to 
consume larger amounts of alcohol before ataxia becomes apparent 
[115].
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 Frontal lobes and the cerebellum are particularly susceptible to 
damage from chronic alcohol use. Decreased myelination may be ap-
parent on pathologic studies of these areas, particularly in the white 
matter [12]. Chronic alcohol toxicity will lead to loss of granule cells 
and atrophy of the cerebellum with the greatest effect in the superior 
anterior vermis. Intrauterine exposure to alcohol is alsodamaging to 
the development of the cerebellum and will produce long term neu-
robehavioral abnormalities. Interestingly, recent animal studies of 
choline supplementation prior to alcohol exposure in pregnant mice 
ameliorated the level of cerebellar dysfunction of the pups [116].  
Choline may be beneficial in the prevention of the toxic effects on 
the cerebellum if given prior to exposure [116,117].  Alcohol is often 
associated with thiamine deficiency or Wernicke’s encephalopathy 
which can produce both a sensory and cerebellar gait ataxia.

Phencyclidine

 Phencyclidine (PCP) is a noncompetitive N-methyl-D-aspartate 
(NMDA) receptor antagonist that can present with cerebellar ataxia, 
tremor and nystagmus.PCP can be inhaled, ingested or injected either 
intravenously or subcutaneously. It has a rapid onset of action over 
2-5 minutes when inhaled or smoked [118]. PCP is lipid, water, and 
alcohol soluble and therefore can have a very large volume of dis-
tribution with varying effects depending on body habitus and blood 
alcohol concentration. It has greatest affinity for the NMDA receptor 
complexes in the hippocampus, neocortex, basal ganglia, and limbic 
system [119]. At moderate doses PCP also inhibits the reuptake of 
dopamine, serotonin, and norepinephrine while simultaneously stim-
ulating production of dopamine and norepinephrine through tyrosine 
hydroxylase activity [118,119] .Given the wide pharmacologic effects 
of this drug, the clinical manifestations are extremely variable with 
the most common findings of nystagmus and hypertension being 
found in 57% of patients [120].

 Intoxicated patients will often present with violent behavior, anal-
gesia, hypertension, nystagmus and tachycardia. Rapidly waxing and 
waning agitation and sedation with slurred speech, nystagmus and 
ataxia will be present. Decreased pain perception, pinpoint pupils, 
sympathomimetic effects, and bizarre horizontal, vertical, rotary nys-
tagmus can help differentiate an ataxic PCP intoxication from other 
toxidromes. PCP may also lead to increased tone with hyperreflexia, 
myoclonus, choreoathetoidor dystonic movements such as opistho-
tonos and torticollis [120]. High doses of PCP can lead to coma, hy-
perthermia and death. Although cerebellar effects are present in the 
majority of patients with PCP, overt ataxia is less common with about 
10% having this manifestation to a significant degree [118,120,121]. 
PCP intoxication is diagnosed with urine toxicologic screen, which 
will remain positive for 2-4 days following drug use. However, di-
phenhydramine, dextromethorphan and venlafaxine can produce false 
positives with some screening urine drug tests [120,121]. Manage-
ment of intoxication is largely supportive. Use of benzodiazepines 
may be warranted in patients without psychosis, given the risk of ex-
acerbating hyperthermia and dystonic movements with antipsychotic 
use [118]. In patients without hyperthermia, atypical antipsychotics 
are beneficial in controlling psychosis, and require close cardiac mon-
itoring.Diphenhydramine can be useful to treat dystonic movements 
brought on by this drug. Although intoxication syndromes usually re-
solve over 4-8 hours, large ingestions may take weeks to fully recover 
[120]. PCP has been shown to be toxic to Purkinje cells in rat studies, 
leading to permanent cerebellar damage [122]. The mechanism of this 
injury was felt to be due to excessive excitatory activity from climb-
ing fibers originating in the inferior olive [122].

Marijuana

 The predominant psychoactive constituent of marijuana is tetrahy-
drocannabinol (THC).Cannabinol and cannabidiol present in marijua-
na plants can also produce less potent psychoactive responses [123].  
There are two specific cannabinoid receptors: CB1 receptors present 
in the basal ganglia, substantia nigra, cerebellum, hippocampus and 
frontal cortex, and CB2 receptors which are not present in the central 
nervous system [124]. Neurologic signs of marijuana use are highly 
dose dependent. In dogs high doses of marijuana exposure were asso-
ciated with ataxia, depression, disorientation, and tremors. Non-neu-
rologic signs included hypersalivation, hypothermia, and mydriasis 
[125].

 Recreational use of low or moderate doses leads to euphoria, lack 
of inhibition, mydriasis, hypersalivation, conjunctival injection, in-
creased appetite, and elevated heart rate [126]. High doses produce 
vomiting, hypertension, tremor, ataxia, hallucinations and stupor 
[126,127].

 Children are more susceptible to the depressive effects of canna-
bis and toxicity can produce rapid onset ataxia, sedation, tachycardia, 
respiratory depression and coma [128]. Management of toxicity is 
generally supportive however in severe cases in children can be treat-
ed with benzodiazepines with close monitoring of respiratory status 
[128].

Cocaine

 Cocaine is a psychostimulant that may present with acute ataxia 
due to its risk of producing ischemic and hemorrhagic strokes, includ-
ing in the cerebellum [10,129]. In rat models, cocaine has been shown 
to alter the immunoreactivity to serotonin in the cerebellum, affecting 
the development of Purkinje cells [130].

Heroin

 Heroin use can lead to changes in cognition, personality, ataxia, 
dementia, coma and death. Chronic use has been shown to lead to 
loss of the cerebellar purkinje cell layer and proliferation of Bergman 
glia [131]. In chronic heroin users, the loss of Purkinje cells has been 
observed [23].

Methadone

 Ingesting methadone can cause an acute toxic encephalopathy with 
changes in the level of consciousness due to cerebellar edema causing 
obstructive hydrocephalus [132,133]. Cerebellar edema may also lead 
to watershed infarcts and can appear to be similar to an infectious 
cerebellitis on brain MRI133. Treatment includes methylprednisolone 
and drainage of CSF, with possible need for a decompressive craniot-
omy [23,132].

Nicotine

 Nicotine is toxic to the cerebellum and can cause depletion of 
purkinje cells [23,134]. Chronic toxicity in rat models demonstrated 
decreased purkinje cells in the cerebellar vermis and loss of cerebel-
lar white matter [135,136]. Nicotine can exacerbate ataxia in patients 
with pre-existing ataxia, such as in patients with multiple system at-
rophy or spinocerebellar ataxia [137,138].
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Toxins And Heavy Metals
Bromide

 Methyl bromide is a colorless gas and has versatile uses. It can be 
used as an insecticide, solvent, refrigerant, methylating agent and in 
fire extinguishers [139]. It has been shown to be toxic to both the cen-
tral and peripheral nervous systems in multiple studies [23,139,140]. 
Case reports of bromide intoxication (through occupational exposure 
from insecticides or bromide-containing compounds that are part of 
over-the-counter sleep aids) had a constellation of symptoms includ-
ing cerebellar deficits with slurred speech and gait ataxia, as well as 
pyramidal and extrapyramidal signs [139,140]. Cerebellar atrophy 
and sometimes pontine tegmental atrophy can be seen on brain MRI 
[23]. Other findings on brain MRI include lesions in the cerebellar 
dentate nuclei, periaqueductal region, dorsal midbrain and pons139. 
Lesions can also be seen in the posterior putamen, subthalamic nuclei, 
dorsal medulla oblongata, inferior cerebellar peduncles and areas of 
the midbrain [141]. Avoidance of bromides after acute insult is imper-
ative. In one case, an acute intoxication was treated with hemoperfu-
sion, which is a procedure similar to hemodialysis [142].

Mercury

 There are several major formulations of mercury that pose a risk 
of exposure tohumans [143].

 Although modern use of mercury in industrial products is rare, 
in the past it was commonly found in thermometers, batteries, light 
bulbs, and electrodes. Some prior dental amalgams contained mercu-
ry and produced a risk for mercury vapor inhalation, which cancause 
multiorgan dysfunction with renal, pulmonary and gastrointestinal 
effects. The absolute amount of mercury vapor produced by a dental 
filling is low and toxicity requires chronic exposure to multiple dental 
amalgam fillings. While modern fillings no longer contain mercury, 
exposure to liquid mercury from antiques can produce vapor toxicity 
[143]. Neurologically,vapor exposurecauses a peripheral neuropathy 
and erethism (severe behavioral, mood, and cognitive change). Meth-
yl mercury or organic mercury is present in some fish and predomi-
nantly affects the central nervous system, producing perioral and dis-
tal extremity parasthesias, ataxia, and optic atrophy with early visual 
field constriction and hearing loss. On pathologic evaluation, meth-
yl mercury preferentially damages neurons of the visual cortex and 
granule cells in the cerebellum143.A regional decrease in blood flow 
may be present in the cerebellum on single photon computed tomog-
raphy following mercury exposure [144].Methyl mercury toxicity can 
cause cerebellar atrophy in 27% of intoxicated patients144.Ethyl mer-
cury was previously found in some parenteral vaccines in the form 
of thimerosal, a component used as a preservative to prevent fungal 
growth. Although only present in low levels and non-toxic in adults, 
there is concern for toxic levels in infants receiving frequent vaccina-
tions, prompting discontinuation of this preservative [145]. Currently 
thimerosal is no longer a component of vaccines in the United States. 
Organic mercury toxicity from sources such as fish responds poorly to 
chelation.On the other hand, inorganic mercury toxicity can be man-
aged with early chelator therapy such as dimercaprol, in addition to 
supportive measures [143,144].

Lead

 Lead intoxication can occur due to ingesting paintsand can be 
worse in children[23]. Symptoms and signs include abdominal pain, 
anemia, central and peripheral neurotoxicity and cerebellar ataxia  

[23]. MRI brain findings include cerebral calcifications and hyper-
intense lesions23. Lead intoxication is treated with chelating agents. 

Toluene

 Toluene is an industrial solvent found is gasoline, paints, glues 
and rubber manufacturing. Toluene preferentially affects areas of the 
CNS with high lipid content such as myelin [12]. Although the exact 
mechanismof CNS damage is unknown,toluene intoxicationcan pro-
duce lightheadedness, altered cognition, and ataxia. Tremor may be 
present in the head and extremities and severe toxicity can cause an-
osmia, hearing loss, personality changes, spasticity and hyperreflexia.  
White matter damage can produce a clinical picture similar to leuko-
encephalopathy with dementia.  Non-neurologic affects include eye 
and respiratory irritation and hepatorenal damageb [146]. Cerebellar 
toxicity can occur with either acute or chronic exposure. Diagnosis 
can be made with either serum toluene levels or urine hippuric acid 
levels. MRI can be useful and may show both cerebral and cerebellar 
atrophy with T2 white matter hyperintensities within the deep struc-
tures of the brain including the periventricular area, internal capsu-
lar, and brainstem pyramidal regions [12]. Management is supportive 
with avoidance of further toxic exposures.

Carbon Monoxide

 Purkinje cells require high levels of oxygen and are susceptible to 
hypoxia [10]. Carbon monoxide (CO) produces hypoxia by binding 
hemoglobin and limiting oxygen saturation of red blood cells. Severe 
acute CO toxicity can damage Purkinje cells and lead to irreversible 
cerebellar symptoms in addition to behavioral changes, cognitive im-
pairment and parkinsonism.

Discussion
 Initial evaluation of either acute or subacute ataxia requires neu-
roimaging to rule out lesional causes such as stroke, tumor, hemor-
rhage, or inflammatory insult. When no clear cause is discovered with 
neuroimaging, a close review of a patient’s medication list for drugs 
commonly associated with ataxia is warranted in addition to a urine 
drug screen. Although medicationinduced ataxia often develops after 
the initiation of a new drug or a change in dose, it is important to 
remember that some medications such as phenytoin, valproate, and 
lithium can lead to ataxia without a clear dose change. Initiation of a 
drug that does not normally cause ataxia but may alter the metabolism 
of one that does should be considered. Furthermore, an acute meta-
bolic or infectious insult can cause ataxia and cerebellar symptoms to 
develop in a patientwho previously tolerated high risk medications 
without issues. The elderly, those with abnormal renal function, and 
patient’s with significant polypharmacy are at high risk of drug in-
duced ataxia and close monitoring after the initiation of a medication 
with the risk of ataxia as an adverse effect is required. Illicit drug 
induced ataxia should also be considered when no clear medica-
tion appears to be leading to a new acute ataxia. Additionally, when 
thorough evaluation for an acute or subacute toxicity is unrevealing 
consideration of environmental exposures to toxic substances such 
as solvents, heavy metals, and toluene should be considered. Man-
agement of possible medication induced ataxia should entail remov-
al of a single agent at a time and monitoring for improvement. The 
majority of drug induced ataxias completely resolve with cessation 
of the offending agent. However, many may take days to months to 
see improvement. Some medications can lead to permanent cerebel-
lar damage despite cessation,including phenytoin, lithium and cytara 
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bine. Antiepileptics represent an important and common cause of new 
ataxia and warrant close monitoring of patients on these medications 
for signs of cerebellar dysfunction. Although nearly all antiepileptics 
can produce ataxia to some degree, medications that have their prima-
ry mechanism of action on sodium ion channels represent the highest 
risk. Purkinje cells are susceptible to medications that alter ion chan-
nel conductance as they contain a high proportion of small conduc-
tance calcium activated potassium channels important for regulation 
of purkinje cell firing patterns [147].

 It is important to have a broad differential with new ataxia and to 
determine if new medications, toxins, or drugs may be contributing to 
a patient’s presentation.
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