General Anesthesia to Low Flows with Sevoflurane in Patients of Colecistectomy by Video Laparoscopy, Regional National Hospital “San Juan De Dios”, San Miguel, year 2019

José Mauricio-Aparicio1,2*, Mario Luis-Quitoc3, Eneyda María-Amaya3, Irving Balmore-Chávez3 and Joseline Milagro-Castillo3

1Internist Physician and Anesthesiologist, Universidad de El Salvador – FMO, El Salvador
2Head of the Department of Anesthesiology of The National Regional Hospital San Juan de Dios of San Miguel, El Salvador
3Graduate in Anesthesiology and Inhalotherapy, Universidad de El Salvador – FMO, El Salvador

Abstract
Objective: To assess the effectiveness of general anesthesia at low flows with Sevoflurane in patients with Video laparoscopy Cholecystectomy.

Methodology: Parallel clinical trial, 80 patients who met the inclusion criteria were studied, divided into two treatment groups; treatment 1 general anesthesia at low flows with oxygen at 1 lts/min and sevoflurane, and treatment 0 general anesthesia at high flow with oxygen at 3 lts/min and sevoflurane. The degree of humidification and temperature of the inspired gases, the time of recovery of anesthesia, oxygen consumption and sevoflurane per minute of use, and the presence of aesthetic gases in the operating room environment were evaluated. The results were processed through the statistical program SPSS version 25.0, under statistical tests of T Student and U Mann-Whitney. A bilateral statistical significance at a value of \(p \leq 0.05 \) was considered.

Result: The relative humidity and temperature of the inspired gases was higher in the treatment at low flows, from minute 15 with \(p = 0.000 \). Oxygen consumption and sevoflurane reflecting, is lower for low flows with \(p = 0.000 \). The recovery time of the anesthesia increased by an average of 10 min compared to the high flow group. The presence of anesthetic gases inside the operating room could not be verified by this study.

Conclusion: General anesthesia at low flows with Sevoflurane is effective as the patient receives higher relative humidity and temperature of the inspired gases, in addition to reducing oxygen consumption and sevoflurane.

Keywords: Effectiveness; General anesthesia; Low flows; Sevoflurane; Video laparoscopy cholecystectomy

Introduction
Aldrete defines the low flows as the administration of gaseous miscellanies, from the immediately low limit of the alveolar ventilation per minute, up to the flow needed only to fulfill the basic consumption of oxygen and the absorption of the anesthetic agent [1].

For the definition of low flows, we owe to help of classifications previously described by Baker, the Simionescu classification and captured later by Baxter in his review of low and minimal flows, which can be observed next: [2]

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic flow</td>
<td>250 mL/min</td>
</tr>
<tr>
<td>Minimum flow</td>
<td>250 to 500 mL/min</td>
</tr>
<tr>
<td>Low flows</td>
<td>500 to 1,000 mL/min</td>
</tr>
<tr>
<td>Medium flows</td>
<td>1 to 2 L/min</td>
</tr>
<tr>
<td>High flows</td>
<td>2 to 4 L/min</td>
</tr>
<tr>
<td>Very high flows</td>
<td>> 4 L/min</td>
</tr>
</tbody>
</table>

If a smaller flow of fresh gas is established, the anesthetic gases in the patient’s exhaled are returned through closed or semi-closed re-breathing systems, all of which establishes a series of benefits that can be divided into clinical, economic and ecological [3].

We are immersed in a process of globalization where the role of the anesthetist must be that of a great planner, using strategies in decision-making to reduce costs and maximize the benefits of anesthetic procedures, it is for this reason that anesthesia at low movements have taken a strong resurgence in recent years, due to clinical, economic, ecological factors and modernization in monitoring technology. Thus, with the arrival of different modern anesthesia machines in the environment, the availability of complete monitoring of anesthetic gases and vapors, the constant use of advantageous but expensive
inhalating agents such as sevoflurane and due to the limitation in the use of Health resources, especially in developing countries such as El Salvador, is that this study aims to obtain evidence-based information on the difficulty of general anesthesia at low levels with Sevoflurane in Video laparoscopic Cholecystectomy patients at the Regional National Hospital “San Juan de Dios”, San Miguel.

Materials and Methods

A study was carried out, which by design is a controlled, randomized clinical trial, with parallel groups, the sampling technique was of simple random type, 80 patients were included: men and women, ASA I and II, undergoing elective cholecystectomy, under balanced general anesthesia, between 18 and 60 years old and BMI between 18.5 and 30 kg/m², with surgical time < 2 hrs and who signed the informed consent (Figure 1).

Two groups were defined: treatment 1: general anesthesia at low oxygen flow (1 L/min) with sevoflurane. Pre-oxygenation with nasal cannulae is performed at 5 Lts/min FiO₂ 40% for 3 minutes, at the same time, a pre-filling of the circular circuit with the overpressure technique with a flow of O₂ 5 L/min and sevoflurane 8 Vol% for 3 min. After that time Atropine 0.5 mg IV is administered as standard dose and propofol 50 mg IV plus positive pressure ventilation with face mask with a flow of O₂ 5 L/min and sevoflurane 8 vol%, when the patient loses consciousness, fentanyl is administered at a dose of 2 μg/kg, propofol 2.5 mg/kg, succinylcholine 2 mg/kg IV, laryngoscopy and orotracheal intubation. The patient is connected to mechanical ventilation and administered of cisatracurium at dose 0.1 mg/kg IV.

When the patient reaches the target MAC value 1.0 - 1.25, the flow with 100% oxygen is reduced to 1.0 L/min and the vaporizer dial is changed between values of 3 - 5 Vol%.

Prior to the end of the procedure, a reduction to the vaporizer agent is performed to 0% approximately 10 minutes before the end of surgery, where oxygen flow is maintained at 1 liter per minute until the patient begins to have a pattern respiratory. The patient is transitioned to spontaneous breathing with 100% oxygen at 6 liters per minute and will be maintained until the patient meets the extubation criteria.

For both groups, at the end of the anesthetic procedure a 50cc sample of ambient air from the operating room was taken and passed through the gas analyzer of the Mindray A5 anesthesia machine.

It was recorded by the observation guide, the relative humidity in %, and the temperature of the gases inspired by every 5 minutes, the amount of O₂ used and the vol% on the sevoflurane dial every 3 minutes, at the close of the sevoflurane vaporizer dial, the recovery of anesthesia was recorded by the modified Aldrete scale every 5 minutes and a note 8 was instituted as a recovery value, environmental pollution expressed in MAC value at the end of the anesthetic procedure, and sevoflurane consumption is defined by the use of the following formulations:

Formulation 1

Anesthetic vapor volume = (% anesthetic X fresh gas flow / 100 - (% anesthetic)

Formulation 2

Liquid volume = Volume of steam used / Vapor produced per ml of anesthetic.

In each ml of liquid sevoflurane there are 182.7 ml of anesthetic vapor [4].

The statistical analysis was carried out using the SPSS v 25.0 program, after obtaining the data, the Shapiro-Wilk normal test was performed, the data group to which a normal distribution was determined was performed the statistical test of t-student, and when the U Mann-Whitney test was obtained, and a bilateral significance with a value of p ≤ 0.05 was considered.

Results

A total of 80 patients were studied: n = 40 (50%) treatment group 0, n = 40 (50%) treatment group 1, with an average age of 38.68 ± 12.08 for treatment 0 and 35.80 ± 12.36 for treatment 1, I predominance the female sex for both treatment groups 55% and 60%, and a physical stage ASA I 70% and 62.5% respectively (Table 1).

Table 1: General Data.
The moisture and the temperature of the inspired gases increases from 15 min in the anesthesia low flows, with a bilateral significance of \(p = 0.000 \), obtaining the registered maximum average of relative moisture for the treatment 1 of 98.20 ± 1.476 % to 105 min and of 61.59 ± 11.554 % to 90 min for the treatment 0, as for the temperature, the biggest registered one was 25.960 ± 1.1436 °C to 75 min for the treatment 1 and 24.172 ± 0.7911 °C to 60 min, for the treatment 0, with a bilateral significance of \(p = 0.000 \) (Figures 2 and 3).

![Figure 2: Relative humidity of inspired gas.](image)

![Figure 3: Temperature of inspired gas.](image)

The time of use of sevoflurane had an average of 69.30 ± 17.393 min for the group 1 and 72.72 ± 17.653 min for the group 0, with a bilateral significance of \(p = 0.382 \), and the time of use of oxygen was 90.77 ± 17.483 min for the treatment 1 and for the treatment 0, 87.45 ± 17.445 min with a bilateral significance of \(p = 0.452 \).

The sevoflurane consumption had an average for the treatment 1, 16.55 ± 2.084 ml and for the treatment 0, 33.02 ± 6.415 ml, with a bilateral significance of \(p=0.000 \), and the time of consumption of oxygen was to 148.85 ± 18.520 L, for the treatment 1 and 295.12 ± 59.927 L for the treatment 0, with a bilateral significance of \(p=0.000 \) (Figures 4 and 5).

The time of recovery of the anesthesia in which a note bigger than 8 was obtained in the modified Aldrete scale was to 20 min in the group of treatment 1, with an average of 9.89 ± 1.811 and for the group 0 to 10 min with an average of 8.85 ± 1.833 (Figure 6).

As for the recording of environmental pollution, no data were obtained.

Discussion

The patients with mechanical ventilation lose the functions of the top airway, of warming and humidification of the inspired gases [5]. On having been ventilated by dry and cold gases, they present a continuous loss of moisture and heat that it predisposes to complications of the airway, such as: alterations of the mucociliary transport, thickening of secretions, dyskinesia ciliary and desquamation epithelial, which drives to hypothermia, hypoxemia and atelectasis to avoid these complications, the patients submitted to anesthetic procedures with intubation endotracheal it is necessary to provide gases with a relative moisture of between 95 - 100 % and a temperature between the status from 28 to 34 °C [6,7].

José S, et al., in 2017 perform a meta-analysis on the effects of different flows of fresh gas with or without a heat and humidity exchanger on the humidity of inhaled gas in adults under general anesthesia, the results have concluded that a higher humidity of the inspired gases...
is obtained using low flows, in comparison with the high flows with IC 95%: 4.53 a 9.86; p < 0.001 [8].

The results of our study imply that general anesthesia and low flows contribute to increase the humidity and temperature of inspired gases, as described in the literature, reducing the implicit complications of an artificial airway.

Ho-Geol Ryu et al., implemented a low flow policy in 2011 (1 L/min) by increasing the number of anesthetic hours per sevoflurane bottle from 250 ml to 10.5 hours per bottle to 17.4 hours, with an increase of 73.7%. Gaston M et al., in 2008 found that the amount of liquid halothane used went from 20 ml per hour, to 7.68 ml ± 0.58 for the first hour, and from 5.25 ml for the second hour of surgery in procedures that lasted more than one hour, with the use of low flows (1 L/min) [9,10].

As for the recovery time of anesthesia, this is higher in anesthesia at low flows, despite that the consumption of oxygen and sevoflurane is not increased due to these factors, Check as described by Christian Hönemann BM Low flow anesthesia, minimum flow and metabolic flow “clinical techniques for use with reinhalation system”, in 2004 [11].

Our investigation showed that oxygen consumption is reduced by 50% and in the case of sevoflurane in anesthesia at low flows, 18.11 hours of anesthesia per 250ml bottle occurs, contrary to the control group, where 9.26 hours per bottle occurs.

In the case of environmental pollution, the research group did not have the specific equipment to measure the presence of anesthetic gases in the operating room, so it was not possible to record data and check this variable, despite this, there is a lot of theory which supports that the use of anesthesia at low flows reduces the presence of anesthetic agents, such as that performed by Leonardo A., in 2001 where he demonstrated a reduction in the amount of isoflurane removed to the operating room, of 1.26 MAC (with 4 L/min), at 0.72 MAC (with 1 L/min) and at 0.46 MAC (with 0.5 L/min). When the flow was reduced from 4 to 1 and from 4 to 0.5 L/min, the elimination fell to 56.7% and 36.2%, with a decrease in pollution of 43.3% and 63.8% respectively [12].

Conclusion

At the end of the research topic, we declared as a study group that we have no conflicts of interest, economic, institutional, work or personal.

It is concluded that general anesthesia at low flows with sevoflurane is effective in patients with video laparoscopic cholecystectomy, San Miguel de Dios Regional National Hospital in San Miguel, since it provides a higher relative humidity and temperature of the inspired gases, than in the general anesthesia at low flows with sevoflurane, the time to wake up post-anesthetic is longer, a lower consumption of oxygen and sevoflurane was demonstrated by anesthetic procedure when using anesthesia at low flows, achieving economic savings, and With respect to anesthetic risk, it is demonstrated that it is a safe technique, similar in safety to general anesthesia at high flows; not having trans or post-anesthetic morbi-mortality, in both treatment groups.

References

Advances In Industrial Biotechnology | ISSN: 2639-5665
Advances In Microbiology Research | ISSN: 2689-694X
Archives Of Surgery And Surgical Education | ISSN: 2689-3126
Archives Of Urology
Archives Of Zoological Studies | ISSN: 2640-7779
Current Trends Medical And Biological Engineering
International Journal Of Case Reports And Therapeutic Studies | ISSN: 2689-310X
Journal Of Addiction & Addictive Disorders | ISSN: 2578-7276
Journal Of Agronomy & Agricultural Science | ISSN: 2689-8292
Journal Of AIDS Clinical Research & STDs | ISSN: 2572-7370
Journal Of Alcoholism Drug Abuse & Substance Dependence | ISSN: 2572-9594
Journal Of Allergy Disorders & Therapy | ISSN: 2470-749X
Journal Of Alternative Complementary & Integrative Medicine | ISSN: 2470-7562
Journal Of Alzheimer's & Neurodegenerative Diseases | ISSN: 2572-9608
Journal Of Anesthesia & Clinical Care | ISSN: 2378-8879
Journal Of Angiology & Vascular Surgery | ISSN: 2572-7397
Journal Of Animal Research & Veterinary Science | ISSN: 2639-3751
Journal Of Aquaculture & Fisheries | ISSN: 2576-5523
Journal Of Atmospheric & Earth Sciences | ISSN: 2689-8780
Journal Of Biotech Research & Biochemistry
Journal Of Brain & Neuroscience Research
Journal Of Cancer Biology & Treatment | ISSN: 2470-7546
Journal Of Cardiology Study & Research | ISSN: 2640-768X
Journal Of Cell Biology & Cell Metabolism | ISSN: 2381-1943
Journal Of Clinical Dermatology & Therapy | ISSN: 2378-8771
Journal Of Clinical Immunology & Immunotherapy | ISSN: 2378-8844
Journal Of Clinical Studies & Medical Case Reports | ISSN: 2378-8801
Journal Of Community Medicine & Public Health Care | ISSN: 2381-1978
Journal Of Cytology & Tissue Biology | ISSN: 2378-9107
Journal Of Dairy Research & Technology | ISSN: 2688-9315
Journal Of Dentistry Oral Health & Cosmesis | ISSN: 2473-6783
Journal Of Diabetes & Metabolic Disorders | ISSN: 2381-201X
Journal Of Emergency Medicine Trauma & Surgical Care | ISSN: 2378-8798
Journal Of Environmental Science Current Research | ISSN: 2643-5020
Journal Of Food Science & Nutrition | ISSN: 2470-1076
Journal Of Forensic Legal & Investigative Sciences | ISSN: 2473-733X
Journal Of Gastroenterology & Hepatology Research | ISSN: 2574-2566
Journal Of Genetics & Genomic Sciences | ISSN: 2574-2485
Journal Of Gerontology & Geriatric Medicine | ISSN: 2381-8662
Journal Of Hematology Blood Transfusion & Disorders | ISSN: 2572-2999
Journal Of Hospice & Palliative Medical Care
Journal Of Human Endocrinology | ISSN: 2572-9640
Journal Of Infectious & Non Infectious Diseases | ISSN: 2381-8654
Journal Of Internal Medicine & Primary Healthcare | ISSN: 2574-2493
Journal Of Light & Laser Current Trends
Journal Of Medicine Study & Research | ISSN: 2639-5657
Journal Of Modern Chemical Sciences
Journal Of Nanotechnology Nanomedicine & Nanobiotechnology | ISSN: 2381-2044
Journal Of Neonatology & Clinical Pediatrics | ISSN: 2378-878X
Journal Of Nephrology & Renal Therapy | ISSN: 2473-7313
Journal Of Non Invasive Vascular Investigation | ISSN: 2572-7400
Journal Of Nuclear Medicine Radiology & Radiation Therapy | ISSN: 2572-7419
Journal Of Obesity & Weight Loss | ISSN: 2473-7372
Journal Of Ophthalmology & Clinical Research | ISSN: 2378-8887
Journal Of Orthopedic Research & Physiotherapy | ISSN: 2381-2052
Journal Of Otolaryngology Head & Neck Surgery | ISSN: 2573-010X
Journal Of Pathology Clinical & Medical Research
Journal Of Pharmacology Pharmaceutics & Pharmacovigilance | ISSN: 2639-5649
Journal Of Physical Medicine Rehabilitation & Disabilities | ISSN: 2381-8670
Journal Of Plant Science Current Research | ISSN: 2639-3743
Journal Of Practical & Professional Nursing | ISSN: 2639-5681
Journal Of Protein Research & Bioinformatics
Journal Of Psychiatry Depression & Anxiety | ISSN: 2573-0310
Journal Of Pulmonary Medicine & Respiratory Research | ISSN: 2573-0177
Journal Of Reproductive Medicine Gynaecology & Obstetrics | ISSN: 2574-2574
Journal Of Stem Cells Research Development & Therapy | ISSN: 2381-2060
Journal Of Surgery Current Trends & Innovations | ISSN: 2578-7284
Journal Of Toxicology Current Research | ISSN: 2639-3735
Journal Of Translational Science And Research
Journal Of Vaccines Research & Vaccination | ISSN: 2573-0193
Journal Of Virology & Antivirals
Sports Medicine And Injury Care Journal | ISSN: 2689-8829
Trends In Anatomy & Physiology | ISSN: 2640-7752

Submit Your Manuscript: https://www.heraldopenaccess.us/submit-manuscript