CWPT (Color Words Pick-Out Test) Available for Classifying the Slight Disorder on the Preclinical Stage of Dementia

Takaki Shimura* Eriko Okuyama and Hironori Osugi

1BME Research Lab, Sosei Ltd., Japan
2Hamamatsu Human Research Lab Ltd, Japan
3Josai International University, Japan

Abstract

Objective: Before concept of mild cognitive impairment (MCI) and preclinical stage of dementia (PCSD) our study started to detect slight declines in the brain. The purpose of this study is to clarify the basis of the ability of the devised CWPT (Color Word Pick-out Test) to detect slight disorder and classify it at the MCI and PCSD.

Methods: CWPT is an application of Stroop effect and is including an examination of episodic memory to obtain the evidence and (1) activation of the prefrontal lobe using an inferred spectroscopy, (2) criterion-related validity using CWPT, WCST, HCL, FAB and MMSE (3) sensitivity and specificity using MMSE and CWPT are examined.

Results: (1) It is found using a near infrared spectroscopy that CWPT is the most effective test for the brain activation, in comparison with quick repetition of 4-5 numbers in order, in reverse order, Kawashima arithmetic drill and KPT (Kana Pick-out Test). (2) among the histograms obtained from 22 healthy aging people, only CWPT and WCST show normal distributions besides CWPT has good correlation with WCST. (3) Sensitivity and specificity are calculated using MMSE as a true condition and CWPT as a predicted condition for 29 subjects with dementia. Sensitivity becomes 0.983 and specificity becomes 1.0 by the cutoff of the average-1.5SD of CWPT.

Conclusion: As a result of these analyses, it has been suggested that CWPT can be used to classify the level of disorder during MCI and the preclinical stage of dementia.

Background

Before the concept of mild cognitive impairment (MCI) and preclinical stage of dementia (PCSD) were denominated [1] our research started with the aim of creating a screening test for slight disorder of the brain function in healthy people. Humans recognize information obtained by the five senses, collect them in the prefrontal cortex, judge how to act based on it, and act, so it is hypothesized that cognitive decline should be measured in the prefrontal cortex function. At first, the subjects were given some tasks, and tried to measure the activity of the prefrontal area by ECG and NIRS, but both measurement methods are noisy and the measurement time is long, so we came to the conclusion that they were not suitable for mass screening. Then, we have come up with CKPT [2-6] as a neuropsychological test that can be used for mass screening.

Introduction

In 2011 Sparling indicated the guidelines for diagnosis of Alzheimer’s disease (Figure 1). Research on the treatment of dementia was initially targeted at patients with dementia but has not been successful, and a paradigm shift of research has recently occurred to MCI and PCSD levels. Along with this, there is a need for an easy-to-use method that is not expensive and invasive diagnosis such as PET and MRI etc. as a method for diagnosing therapeutic effects.

Devised CKPT is quite suitable for this purpose, because it can be used for mass screening. CKPT consists of two subtests, one is the applied task of Stroop effect [7] and the other is the task of examining short term memory of episodes. The performance of the two tasks seems to reflect the level of prefrontal function.

In this study, we describe the evaluation results of various kinds of evidence required for practical use of CKPT.

Keywords: CWPT; Neuropsychological test; PCSD; MCI; Slight disorder

Figure 1: Guidelines for diagnosis of Alzheimer’s disease.
Methods

Actually, the CWPT used in Japan uses Japanese “Hiragana” and “Kanji”, it is called CKPT (Color Kanji Pick-up Test). In this paper English version of CWPT is used as a sample which is translated in English.

In CWPT, a story including color words are shown first like Figure 2 upside. Subjects should read the story memorizing the episode of it and pick-out color words discerning the matching of meaning and printed color, simultaneously. If the meaning and the printed color of the word are matched, give circle (〇) on the word. If unmatched, give cross (×) after that, subjects are required to answer the questions without seeing the story.

![Figure 2: CWPT Upside: Story down side: Questions.](image)

The evidences investigated is as follows:

1. Activation of the prefrontal lobe using an inferred spectroscopy.
3. Sensitivity and specificity using MMSE and CWPT.

Ethical Consideration

For this paper, all subjects have agreed to use the data while keeping their personal information confidential.

Evidences

Evidences investigated are done under following hypothesis: slight declines in cognitive function should be measured as a decline in the prefrontal cortex, because the prefrontal cortex is a command to where that collects information obtained from the five senses and determines human behavior.

Activation of the prefrontal lobe

Subjects: S1: 20’s (female), S2: 40’s (female), S3: 60’s (female) and S4: 80’s (male)

Methods: Activation is examined using NIRS (Near Inferred Spectroscopy), which can obtain real time activation value under doing a task.

![Figure 3: The principle of NIRS comparison is done between tasks under the same volume on NIRS.](image)

Result: To compare the activation ability of each task, the average activation value is derived from time series signals of each tasks. Table 1 shows the results where relative values for each task are shown in a row. To facilitate comparison of activation levels, 4 ranks, Low, Moderate, Fair and good are assigned and colored.

<table>
<thead>
<tr>
<th>Subject (Detection position)</th>
<th>Activation</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task1</td>
<td>Task3</td>
<td>KPT (picking)</td>
</tr>
<tr>
<td>S1 (O25)</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Rank</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>S2 (O43)</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Rank</td>
<td>L</td>
<td>F</td>
</tr>
<tr>
<td>S3 (O40)</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>Rank</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S4 (O46)</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Rank</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Comparison between tasks [12].

0.125<: L, 0.125-0.250: M, 0.250-0.375: F, 0.375>: G

Task 1: quick repetition of 4-5 numbers in order
Task 3: calculating Kawashima arithmetic drill
KPT: Kana Pick-out Test (picking-out Kana characters and recalling the episode of the story)
CKPT: Japanese version of CWPT (picking-out color words and recalling the episode of the story)

Through this examination, it is found that CKPT is the best task which activates the prefrontal lobe.

Criterion-related validity

Subjects: Numbers: 13mails and 9females, Age: 68.9±4.2, EducationalBG: 2(JuniorHigh School), 10(Senior High School), 5(Junior College), 5(University), Dementia criterion: MMSE>27.

Results: Histograms obtained on each test are shown at Figure 4. On MMSE subjects are distributed at the right end of the histogram, indicating that they are healthy people. On the FAB histogram, the same tendency is observed. On the other hand, the histogram of HCL has no regularity. The reason is that HCL survey is a form to answer questions. It is an important notice that on CKPT and WCST in the lower part, their histograms have normal distribution and only with this distribution, it is possible to classify functions.

The correlation coefficient between CKPT and other tests are examined and the results are shown at Table 2. It is suggested that CKPT correlates with WCST (correct numbers) and WCST (error numbers), which is well known as prefrontal lobe test.

Sensitivity and Specificity

Sensitivity and Specificity of CKPT is examined using MMSE which is used as a general neuropsychological test in the world wide.

Subjects: The subjects are 29 people who attend to day services and have some kinds of dementia (Table 3).

Methods: In order to calculate Sensitivity and Specificity of CWPT, False negative (FN), True negative (TN), False positive (FP) and False positive (FN) are determined first, where true condition is by MMSE using cutoff of 27 points and predicted condition is by CKPT using the cutoff of average-1.5SD (Figure 5). Then sensitivity and specificity are calculated by

\[\text{Sensitivity} = \frac{TP}{TP + FN} \]
\[\text{Specificity} = \frac{TN}{TN + FP} \]

Results: 4 conditions discriminated by average-1.5SD of CKPT is shown for patients with AD (Figure 6). The same analysis are done for the other kinds of dementia, Table 4 is the result. Using the total number, sensitivity and specificity are calculated as 0.963 and 1.0 using Equation 1 and 2, respectively.

Summary

A neuropsychological test named CWPT (whose Japanese version is CKPT) is developed to classify minor cognitive function impairment before MCI of dementia. It is based on the hypothesis that a minor decline in cognitive function appears in the prefrontal lobe.

In the investigation of evidences, the followings are pointed out:

• The prefrontal lobe is sufficiently activated during CKPT.
• The histograms of only CKPT and WCST have normal distribution that is the important sign of being able to classify the slight disorder on preclinical stage of dementia.
CKPT correlates with WCST which is well known as a prefrontal lobe examination.

- Both sensitivity and specificity are enough.

Conclusion

In Japan the number of healthy people who have received CKPT reaches approximately 5000. The criteria used in the process have been derived from the latest patients. Persons with an average value of -1.5 SD or less are advised to receive a specialist doctor. Such operations have been accepted and effective. CKPT is also used to measure the effects of non-drug therapy.

We are hoping to spread CWPT internationally, and are waiting for researchers and entrepreneurs to translate it into the languages of each country and put it to practical use.

Acknowledgment

We would like to thank the many people who helped us collect CKPT data. Special attention was given to the people of the Shizuoka Life Support Center, the staff of Fukuroi City and Iwata City, and volunteers. We would also like to thank Satoshi Yamada for helping organize the data.

References

Journal of Anesthesia & Clinical Care
Journal of Addiction & Addictive Disorders
Advances in Microbiology Research
Advances in Industrial Biotechnology
Journal of Agronomy & Agricultural Science
Journal of AIDS Clinical Research & STDs
Journal of Alcoholism, Drug Abuse & Substance Dependence
Journal of Allergy Disorders & Therapy
Journal of Alternative, Complementary & Integrative Medicine
Journal of Alzheimer’s & Neurodegenerative Diseases
Journal of Angiology & Vascular Surgery
Journal of Animal Research & Veterinary Science
Archives of Zoological Studies
Archives of Urology
Journal of Atmospheric & Earth-Sciences
Journal of Aquaculture & Fisheries
Journal of Biotech Research & Biochemistry
Journal of Brain & Neuroscience Research
Journal of Cancer Biology & Treatment
Journal of Cardiology: Study & Research
Journal of Cell Biology & Cell Metabolism
Journal of Clinical Dermatology & Cell Metabolism
Journal of Clinical Dermatology & Therapy
Journal of Clinical Immunology & Immunotherapy
Journal of Clinical Studies & Medical Case Reports
Journal of Community Medicine & Public Health Care
Current Trends: Medical & Biological Engineering
Journal of Cytology & Tissue Biology
Journal of Dentistry: Oral Health & Cosmesis
Journal of Diabetes & Metabolic Disorders
Journal of Dairy Research & Technology
Journal of Emergency Medicine Trauma & Surgical Care
Journal of Environmental Science: Current Research
Journal of Food Science & Nutrition
Journal of Forensic, Legal & Investigative Sciences
Journal of Gastroenterology & Hepatology Research
Journal of Gerontology & Geriatric Medicine
Journal of Genetics & Genomic Sciences
Journal of Hematology, Blood Transfusion & Disorders
Journal of Human Endocrinology
Journal of Hospice & Palliative Medical Care
Journal of Internal Medicine & Primary Healthcare
Journal of Infectious & Non Infectious Diseases
Journal of Light & Laser: Current Trends
Journal of Modern Chemical Sciences
Journal of Medicine: Study & Research
Journal of Nanotechnology: Nanomedicine & Nanobiotechnology
Journal of Neonatology & Clinical Pediatrics
Journal of Nephrology & Renal Therapy
Journal of Non Invasive Vascular Investigation
Journal of Nuclear Medicine, Radiology & Radiation Therapy
Journal of Obesity & Weight Loss
Journal of Orthopedic Research & Physiotherapy
Journal of Otolaryngology, Head & Neck Surgery
Journal of Protein Research & Bioinformatics
Journal of Pathology Clinical & Medical Research
Journal of Pharmacology, Pharmaceutics & Pharmacovigilance
Journal of Physical Medicine, Rehabilitation & Disabilities
Journal of Plant Science: Current Research
Journal of Psychiatry, Depression & Anxiety
Journal of Pulmonary Medicine & Respiratory Research
Journal of Practical & Professional Nursing
Journal of Reproductive Medicine, Gynaecology & Obstetrics
Journal of Stem Cells Research, Development & Therapy
Journal of Surgery: Current Trends & Innovations
Journal of Toxicology: Current Research
Journal of Translational Science and Research
Trends in Anatomy & Physiology
Journal of Vaccines Research & Vaccination
Journal of Virology & Antivirals
Archives of Surgery and Surgical Education
Sports Medicine and Injury Care Journal
International Journal of Case Reports and Therapeutic Studies
Journal of Ecology Research and Conservation Biology