Glioblastoma & Hyperbaric Oxygen Therapy

Malcolm R Hooper*
Clinical Director OXYMED, Australia

*Corresponding author: Malcolm R Hooper, Clinical Director OXYMED, Australia, Tel: +61 3 9826 9898; E-mail: info@oxymed.com.au


Received: May 25, 2020; Accepted: Jun 02, 2020; Published: Jun 09, 2020

Copyright: © 2020 Hooper MR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Young RH age 7 - Recurrent Glioblastoma (GBM) MRI January 2017, and again after surgical debulking. Young RH was listless after each radiation session.

Hyperbaric Oxygen Therapy (HBOT) treatment interval: 4 weeks. RH received 84 hours of HBOT and further MRI.

Cytokine testing pre HBOT

Cytokine testing at 106 hours HBOT
RH was treated using Hyperbaric Oxygenation Therapy (HBOT) at 1.8 ATA and 100% O2 with regular air breaks. RH continued with a strict ketogenic diet [1,2] and supplements focused on cytokine modulation. RH did not experience any side effects or seizures during or after HBOT sessions. RH’s improvement whilst undertaking HBOT was extraordinary. He returned to school and mostly to a normal life. Oxygen that is given at a pressure that is higher than the pressure of the atmosphere at sea level. In medicine, breathing hyperbaric oxygen increases the amount of oxygen in the body. It is used in treating certain kinds of wounds, injuries, and infections. It is also used to treat carbon monoxide poisoning and other conditions in which the tissues are not getting enough oxygen [3]. It is being studied in the treatment of some types of cancer. Hyperbaric oxygen may increase the amount of oxygen in cancer cells, which may make them easier to kill with radiation therapy and chemotherapy. It is a type of radio sensitizing agent and a type of chemosensitizing agent [3,4]. HBOT assists immune responses to chemotherapy reducing immunosuppression and neutropenia [4].

Glioblastoma Multiforme (GBM) is the most common type of malignant intracranial tumor in adults and has a poor prognosis, with a median survival of about 12 months. It is rare in children with the prognosis unfavourable [5]. Despite advances in surgery and adjuvant treatment, the average survival is about 1 year, which has not been improved significantly during the last three decades [3,5].

Tumor hypoxia, high mitotic rate, and rapid tumor spread account for its poor prognosis [6-8]. Hypoxia alters cancer cell metabolism and contributes to therapy resistance [9]. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFkB pathways. Tumor hypoxia and HIF cell signaling are involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy [8,9].

Hyperbaric Oxygen Therapy may improve the sensitivity of radio-chemotherapy by increasing oxygen tension within the hypoxic regions of the neoplastic tissue [10].

Limited clinical trials and suggest that radiotherapy immediately after HBOT enhances the effects of radiotherapy in some cases [6,11]. HBOT also is able to strengthen the anti-tumor effect of chemothera- py when applied together [12]. Overall, HBOT is well tolerated in the GBM patients and does not significantly increase toxicity [6]. HBOT applied by itself as curative strategy against GBM and other cancer forms is controversial [13,14]. In addition to HBOT favorably managing the therapeutic resistance of GBM, research is now focussed on the multimodal or cocktail approaches to treatment, as well as molecular strategies targeting GBM stem cells [12]. The reoxygenation brings additional benefit of making glioblastoma multiforme cells even more responsive to the killing effect of a cytotoxin [12].

Discussion

HBOT has been described as the ‘integrative bridge’ between orthodox medicine and complimentary approaches. Oxygen is essential to drug delivery [15].

HBOT reduces inflammatory cytokines including IL-1β, IL-6, IL-8, TNF-α, S100B through several transcription factors regulating inflammation, including hypoxia inducible factor 1 (HIF-1), Nrf2 and NFkB [10,12-14,16].

HBOT up regulates the patient’s own target specific Stem Cells {an 8-fold (800%) increase in circulating CD34+} [17,18].

HBOT enhances Mitochondrial respiration and function [12,19].

Acknowledgement

I would like to thank the parents of RH for permission to use the clinical findings to support this presentation.

References


