

**Research Article**

# Chemical Composition, in-vitro Digestibility and in-sacco Degradability of Natural Pasture Hay, Replacement of Concentrate with Lablab Purpureus Hay

Chala Duguma\*

Department of Animal Science, Ambo University, Ambo, Ethiopia

## Abstract

The study was conducted to evaluate the chemical composition, in vitro dry matter digestibility (IVDMD) and insacco dry matter degradability of natural pasture hay, replacement of concentrate with Lablab Purpureus hay. The study treatments were natural pasture hay fed ad libitum to all treatments plus 100% CM/day (T1, control supplemented), 75%CM: 25%LP/day (T2), 50%CM: 50%LP/day (T3), 25%CM: 75%LP/day (T4), 100%LP/day (T5). The amount of other sole or mixture of supplements was calculated on isonitrogenous basis to the CM, from pre-determined nitrogen content of the dietary ingredients. Chemical composition of dry matter (DM), crude protein (CP), crude ash (CA), ether extract (EE), crude fibre (CF), neutral detergent fibre (NDF) was determined. In saccus rumen degradability was measured using three rumen fistulated Holstein Friesian and Borana cross steers at 0, 6, 12, 24, 48, 72 and 96 h. The DM and organic matter (OM) degradability data were fitted to the equation  $Y = a + b(1 - e^{-ct})$ . Variations were observed in chemical compositions. For instance, CP ranged from 74 to 311 g/kg for DM. The lowest CP was recorded for natural pasture hay while the highest CP was obtained from noug seed cake. The result of present study revealed that sole Lablab Purpureus (100% Lablab Purpureus) is a potential alternative supplementation with relatively high level of protein, nitrogen degradation and undegradable protein for sheep.

\*Corresponding author: Chala Duguma, Department of Animal Science, Ambo University, Ambo, Ethiopia E-mail: chduguma17@gmail.com

**Citation:** Duguma C (2025) Chemical Composition, in-vitro Digestibility and in-sacco Degradability of Natural Pasture Hay, Replacement of Concentrate with Lablab Purpureus Hay. *J Anim Res Vet Sci* 9: 068.

**Received:** September 02, 2025; **Accepted:** September 22, 2025; **Published:** October 3, 2025

**Copyright:** © 2025 Duguma C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction in any medium, provided the original author and source are credited.

**Keywords:** Chemical composition; Concentrate; Insacco degradability; In-vitro digestibility; Lablab Purpureus

## Introduction

Livestock productivity in developing countries like Ethiopia is low mainly due to inadequate feed supply both in quantity and quality. most feed resources are characterized by inherent nutritional deficiencies are generally low in nitrogen, energy, vitamins and minerals [1], which affect microbial growth and fermentation in the rumen, resulting in low feed intake and digestibility, leading to reduced reproductive capacity, decline in growth rates and increased mortality rates. The bulky and fibrous nature of coarse feeds results in poor nutrient supply and reduced intake [2]. In general, the availability of feed resources in Ethiopia is insufficient both in terms of quality and quantity of nutrient supply. There are several complementary and alternative strategies that can be pursued in tropical regions with the objective of making low quality feeds more useful for production of meat and milk. Concentrate feed supplementation is one strategy, which can increase digestibility, nutrient supply and intake [3]. The crop-livestock farming systems in the Ethiopian highlands are under stress because of shrinking cultivated areas per household, land degradation reduced pasture land [4].

To solve this problem, there are options like supplementing animals with agro-industrial by-products such as different oil seed cakes and brans from edible oil and flour processing industries, respectively. However, they are costly and not readily available everywhere. As a result, production and feeding of herbaceous and fodder tree legumes through integration with food crops were suggested as one of the potential options to improve the nutrient supply to livestock [1]. Potential use of cultivated forages as supplementary diet options for livestock have been investigated in Ethiopia in earlier studies [5,6]. Supplementation with forage legumes (herbaceous and shrubby or tree legumes) can enhance the utilization of poor-quality roughages in smallholder mixed farming systems for better growth and carcass yield of sheep [7]. However, wider use of cultivated forages by livestock keepers in Ethiopia is not significant probably because of scarcity in information regarding the feeding value, lack of information regarding means of its efficient utilization, such as in combination with different non-grain and grain concentrates less adoption and wider cultivation practices of this feed. Chemical composition, in-vitro and in-sacco degradability characteristics are recognized to be a useful indicator of the nutritional value of livestock feed resources. Hence, the objective of this study was to evaluate the In-Vitro Dry Matter Digestibility (IVDMD, In-Vitro Organic Matter Digestibility (IVOMD) in-sacco DM degradability characteristics of Natural Pasture Hay, Replacement of Concentrate with Lablab Purpureus Hay.

## Materials and Methods

### Description of the study area

Natural pasture hay was purchased from Ejaji town, west shewa zone, Oromia region, on the all-weather high way between Addis

Ababa and nekemte, this town has a longitude 37.3°E and latitude 8.99°N. Ejaji is the administrative center of Elu gelan woreda. The mean annual rainfall was 1091 mm and the mean minimum and maximum daily temperatures of the area were 13°C and 24 °C, respectively. Lablab Purpureus was planted at Guder campus, West shewa Zone, Oromia, Ethiopia. Campus was located 12km West of Ambo town. It was located between geographical coordinates of 8°58'N to 9° 67'N latitude and 37° 46'E to 38°67'E longitude with altitude average 2101 masl. The mean annual rainfall was 1068 mm and the mean minimum and maximum daily temperatures of the area were 14 and 28 °C, respectively. Noug seed cake (NSC), Maize grain and wheat bran (WB) were purchased from Guder food complex factories.

### Treatments, Sampling of feeds and their preparation

Experimental feeds were composed of natural grass hay and replacement of concentrate mix with Lablab Purpureus (LP) legume forage. The natural pasture hay was bought from hay producer and stored in hay shade till the feeding was started. A seed of Lablab Purpureus of 90% viability was sown at the recommended rate of 15-20 kg/ha in Ambo University campus farm site. The LP was sown in a plot with 40 cm within rows and 100 cm between rows. The legume received 50 kg/ha phosphate fertilizer at sowing time. Hand weeding and hoeing were conducted until the forage reach harvest stage. Lablab Purpureus hay was prepared by cutting or harvesting at growth stage of 50% flowering and stored in hay shade. The hay was dried until it is crispy by frequently turning in order to maintain its green color. Mechanical chopping was done approximately to 4-7cm length and chopped materials were dried under shade until use for feeding. The concentrate mixtures consist of 55% wheat bran, 30% noug seed cake and 15% maize grain. The Lablab Purpureus replaced the concentrate mixture at proportions of 0%, 25%, 50%, 75% and 100%. The Lablab Purpureus and the concentrate were provided as a mixed ration according to the treatment. Concentrate was supplemented for control group at a rate of 400 gm/head/day and treatment groups were supplemented with four levels of Lablab Purpureus and concentrate mix as outlined below. Horro sheep breed expected to consume 830g DM daily. The amount of grass hay to be included in the mixture was then obtained by subtracting the 400g DM CM from total daily DM intake and was 430g DM of grass hay.

### Treatments diets were

T1=430g of grass hay+100%CM or 400g CM; T2=430g+75%C-M+25%LP; T3=430g+50%CM+50%LP; T4=430g+25%C-M+75%LP; T5=430g+100%LP or 400g LP.

For each of the above treatment diets, enough amounts of samples were prepared for in-vitro and in-sacco degradability.

### Chemical analysis

Samples of dietary ingredients and treatment diets were dried at 60°C for 72 hours in a forced draft oven. Part of the dried samples were ground in a Willey mill to pass through 1 mm sieve for chemical analysis and in-vitro DM digestibility while the other part was ground to pass through 2 mm sieve for in-sacco degradability. Dietary ingredient samples were analysed for DM, OM, ash, nitrogen (N) according to the AOAC [8]. Crude protein content was calculated as N x 6.25. The NDF, ADF and ADL contents were analyzed using the detergent extraction method [9]. The metabolizable energy (ME) was estimated ME (MJ/Kg DM) = 0.016 X DOMD, Where DOMD = is gram digestible organic matter per kilogram dry matter, where

DOMD is digestible organic matter in dry matter taken from invitro DM digestibility values. Organic matter (OM) content was calculated as: % OM = 100 - ash percentage.

### In vitro organic matter digestibility

In-vitro DM digestibility and IVOMD was determined following the two stage fermentation procedure of Tilley and Terry [10]. Samples were incubated for 48 hours with rumen fluid and buffer followed by another 48 hour digestion with pepsin and HCl. Rumen liquor was collected from three ruminally fistulated Boran x Holstein Friesian steers in the morning before animals were offered feed. These animals were under maintenance level of feeding on ad libitum hay (7% CP) and 2kg of concentrate mixture comprising of 74, 25 and 1% wheat bran, noug seed cake and salt, respectively. The residue after incubation was ashed in a muffle furnace at 550 °C for 5 hours to determine IVOMD.

### In sacco Dry Matter Degradability

Ruminal in-sacco DM degradability characteristics was determined by incubating 3 g samples of feed in nylon bags having (41  $\mu$  pore size and 6.5 x 14 cm dimension), in three ruminally fistulated Boran x Holstein Friesian steers for 0, 6, 12, 24, 48, 72 and 96 hours [11,12]. The steers were kept under maintenance ration as described in the previous section and had free access to water and common salt. Sample containing nylon bags were inserted at different times and removed at the same time. Upon the removal of nylon bags at the end of the incubation hours, all bags were hand washed under a running tap water and oven dried at 105°C for 24 hours. Zero hour solubility was also estimated by hand washing the samples contained in nylon bags in the same way as the incubated samples. The degradability of DM (DMD) was determined for each incubation time as DMD (g/kg DM) = 1000 x (DM in feed sample-DM in residue)/DM in feed. The DMD parameters were fitted to the equation described by Ørskov and McDonald [11,12] using the Neway Excel programme [13].

$Y = a + b (1 - e^{-ct})$ , where Y = the potential disappearance of DM at time t

a = rapidly degradable fraction

b = potentially but slowly degradable fraction

c = the rate of degradation of b

e = the natural logarithm

t = time

The potential degradability (PD) was estimated as the sum of rapidly degradable fraction and the potentially but slowly degradable fraction (PD = a+b). Effective degradability (ED) was calculated following the method of Ørskov and McDonald [11,12] assuming a passage rate of 4%/h, as ED = a + [b\*c]/(c+k); where k = passage rate (rumen out flow rate).

### Statistical analysis

Data was subjected to analysis of variance (ANOVA) using the GLM (General Linear Model) procedure of statistical analysis system [14]. When analysis of variance (ANOVA) declare significant difference among treatment means, mean separation was carried out by the least significant difference (LSD).

## Results and Discussion

### Chemical Composition

The chemical composition of the experimental feeds used in the current study was presented in (Table 1). Variations were observed in chemical compositions. For instance, CP ranged from 74 to 311. The lowest CP was recorded for natural pasture hay while the highest CP was obtained from noug seed cake. The DM content of natural pasture hay offered to the experimental animals was comparable to the values of 906 and 912 reported by Dereje [15] and Jalel [16], respectively, but lower than the value of 96% reported by Worknesh and higher than value of 723 reported by Abera and Yoseph [17]. Leaf of Lablab Purpureus has CP content that ranges 21-38%, but it varies depending on the plant part composition [18]. Lablab Purpureus hay has high NDF and ADF when compared with the other feedstuffs used in the current study, other than the basal diet hay. The current OM value for Lablab Purpureus was comparable to the value of 891 reported by Worknesh.

The value of CP in the maize grain was comparable to the value of 84 and 85 reported by Tesfaye [19] and Tesfaye, respectively. Similarly, OM content of maize grain was comparable to the value of 983 reported by the former author. The CP content of WB is not usually consistent, mainly due to variation in variety and extraction rate [11]. Fine wheat for instance, contains CP that ranges from 16 to 21% and coarse wheat or bran contains 10-15% CP content. The CP content of NSC in the current study was lower than the value of 325 and 328 reported by Abera and Yoseph [17] and Dereje [15], respectively. But it was comparable to the value of 318 and 316 reported by Anteneh [20] and Worknesh, respectively. The difference in the CP content of NSC used in the present study and other studies might be due to the method of processing and variety of the noug seed used [21].

| Ingredients      | Chemical composition (g/kg for DM and g/kg for others) |     |     |     |     |     |     |
|------------------|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|
|                  | DM                                                     | OM  | Ash | CP  | NDF | ADF | ADL |
| Grass hay        | 909                                                    | 878 | 122 | 74  | 724 | 445 | 83  |
| Lablab Purpureus | 918                                                    | 881 | 119 | 210 | 513 | 463 | 117 |
| Wheat bran       | 905                                                    | 941 | 59  | 187 | 490 | 157 | 62  |
| Noug cake        | 890                                                    | 907 | 93  | 311 | 388 | 283 | 94  |
| Maize grain      | 902                                                    | 981 | 19  | 82  | 58  | 27  | 11  |

**Table 1:** Chemical Composition of natural pasture hay, Lablab Purpureus hay, wheat bran, noug cake and maize grain.

DM= Dry matter; CP= Crude protein; NDF= Neutral detergent fiber; ADF= Acid detergent fiber; ADL=Acid detergent lignin; OM= Organic matter

### In-vitro dry matter and organic matter digestibility and metabolizable energy content

In-vitro dry matter and organic matter digestibility and metabolizable energy content of dietary ingredients and treatment diets was given in (Table 2).

| Ingredients and treatment diets | IVDMD (g/kg DM)    | IVOMD (g/kg DM)    | ME (MJ/kg DM)     |
|---------------------------------|--------------------|--------------------|-------------------|
| <b>Ingredients</b>              |                    |                    |                   |
| Grass hay                       | 424 <sup>e</sup>   | 392.3 <sup>d</sup> | 6.27 <sup>e</sup> |
| Lablab Purpureus                | 613.6 <sup>d</sup> | 571 <sup>c</sup>   | 9.13 <sup>d</sup> |

|                        |                    |                     |                    |
|------------------------|--------------------|---------------------|--------------------|
| Noug seed cake         | 780.6 <sup>b</sup> | 706.3 <sup>b</sup>  | 11.3 <sup>b</sup>  |
| Wheat bran             | 823 <sup>a</sup>   | 769 <sup>a</sup>    | 12.3 <sup>a</sup>  |
| Maize grain            | 727.6 <sup>c</sup> | 675.6 <sup>b</sup>  | 10.76 <sup>c</sup> |
| SEM                    | 4.77               | 6.68                | 0.105              |
| SL                     | ***                | ***                 | ***                |
| <b>Treatment diets</b> |                    |                     |                    |
| T1                     | 682.3 <sup>a</sup> | 647.6 <sup>a</sup>  | 10.36 <sup>a</sup> |
| T2                     | 656.3 <sup>b</sup> | 616.6 <sup>a</sup>  | 9.86 <sup>a</sup>  |
| T3                     | 618 <sup>c</sup>   | 557.3 <sup>b</sup>  | 8.9 <sup>b</sup>   |
| T4                     | 594.6 <sup>d</sup> | 529.6 <sup>bc</sup> | 8.46 <sup>bc</sup> |
| T5                     | 576 <sup>c</sup>   | 496.6 <sup>c</sup>  | 7.9 <sup>c</sup>   |
| SEM                    | 2.77               | 9.16                | 0.15               |
| SL                     | ***                | ***                 | ***                |

**Table 2:** In-vitro dry matter and organic matter digestibility and metabolizable energy content of dietary ingredients and treatment diets.

a-e= means within a row not bearing a common superscript are significantly different; p<0.01=\*\*, p<0.001=\*\*\*; ns=non-significant; SL=significance level; SEM= Standard error of the mean; DM = Dry matter; MJ = Mega joule; IVDMD= in-vitro dry matter digestibility; IVOMD= In-vitro organic matter digestibility; ME = Metabolizable energy; T1=430g of grass hay+100%CM or 400g CM; T2=430g+75%CM+25%LP; T3=430g+50%CM+50%LP T4=430g+25%CM+75%LP; T5=430g+100%LP or 400g LP.

### In-sacco dry matter degradability characteristics

In-sacco dry matter degradability characteristics in (Table 3).

| Ingredients and treatment diets | Incubation hours   |                    |                    |                    |                    |                    |
|---------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                 | 6                  | 12                 | 24                 | 48                 | 72                 | 96                 |
| <b>Ingredients</b>              |                    |                    |                    |                    |                    |                    |
| Grass hay                       | 97.3 <sup>d</sup>  | 159 <sup>e</sup>   | 222.3 <sup>e</sup> | 291 <sup>e</sup>   | 371.3 <sup>e</sup> | 428.6 <sup>e</sup> |
| Lablab Purpureus                | 206.3 <sup>c</sup> | 282.3 <sup>d</sup> | 355.6 <sup>d</sup> | 468.3 <sup>d</sup> | 549.6 <sup>d</sup> | 583.3 <sup>d</sup> |
| Noug seed cake                  | 412.6 <sup>b</sup> | 544 <sup>b</sup>   | 642.3 <sup>b</sup> | 701.6 <sup>b</sup> | 778.3 <sup>b</sup> | 810.6 <sup>b</sup> |
| Wheat bran                      | 510.3 <sup>a</sup> | 646 <sup>a</sup>   | 735.6 <sup>a</sup> | 784.3 <sup>a</sup> | 840.6 <sup>a</sup> | 858 <sup>a</sup>   |
| Maize grain                     | 393.3 <sup>b</sup> | 514 <sup>c</sup>   | 609 <sup>c</sup>   | 676.3 <sup>c</sup> | 747.6 <sup>c</sup> | 774 <sup>c</sup>   |
| SEM                             | 4.38               | 4.9                | 4.12               | 3.33               | 5.56               | 3.7                |
| SL                              | ***                | ***                | ***                | ***                | ***                | ***                |
| <b>Treatment diets</b>          |                    |                    |                    |                    |                    |                    |
| T1                              | 324.6 <sup>a</sup> | 401 <sup>a</sup>   | 475 <sup>a</sup>   | 579.6 <sup>a</sup> | 572 <sup>a</sup>   | 635.6 <sup>a</sup> |
| T2                              | 292.3 <sup>b</sup> | 363.6 <sup>b</sup> | 442.6 <sup>b</sup> | 544.3 <sup>b</sup> | 539.6 <sup>b</sup> | 592.6 <sup>b</sup> |
| T3                              | 253.3 <sup>c</sup> | 349 <sup>b</sup>   | 410.3 <sup>c</sup> | 491 <sup>c</sup>   | 489.6 <sup>c</sup> | 538.6 <sup>c</sup> |
| T4                              | 217.3 <sup>d</sup> | 306.3 <sup>c</sup> | 378.6 <sup>d</sup> | 428.6 <sup>d</sup> | 448.3 <sup>d</sup> | 487.3 <sup>d</sup> |
| T5                              | 194.3 <sup>e</sup> | 271.6 <sup>d</sup> | 322.3 <sup>e</sup> | 389 <sup>e</sup>   | 487.6 <sup>e</sup> | 456.6 <sup>e</sup> |
| SEM                             | 0.95               | 3.25               | 4.99               | 4.93               | 5.87               | 6.0                |
| SL                              | ***                | ***                | ***                | ***                | ***                | ***                |

**Table 3:** In-sacco dry matter degradability (g/kg DM) of dietary ingredients and treatment diets.

a-e= means within a row not bearing a common superscript are significantly different; p<0.01=\*\*, p<0.001=\*\*\*; ns=non-significant; SL=significance level; SEM= Standard error of the mean; DM = Dry matter; T1=430g of grass hay+100%CM or 400g CM; T2=430g+75%CM+25%LP; T3=430g+50%CM+50%LP T4=430g+25%CM+75%LP; T5=430g+100%LP or 400g LP.

The in-sacco DM degradation parameters of the dietary ingredients and treatment diets are presented in (Table 4). The degradation

parameters (a, b, c, ED and PD) for DM varied significantly among all treatments and dietary ingredients. The rapidly degradable DM fraction of the dietary ingredients ranged from 78g/kg DM in pasture hay to 345g/kg DM in wheat bran and treatment diets ranged from 176g/kg DM in T4 to 256g/kg DM in T1. The slowly degradable DM fraction of the dietary ingredients ranged from 462g/kg DM in pasture hay to 586g/kg DM in noug seed cake and treatment diets ranged from 497g/kg DM in T1 to 523g/kg DM in T4. The rate of DM degradation of dietary ingredients ranged from 0.023%/h in pasture hay to 0.072%/h in Lablab Purpureus and treatment diet ranged from 0.044%/h in T1 to 0.072%/h in T5 while potential degradability of DM of dietary ingredients ranged from 540g/kg DM in pasture hay to 866g/kg DM in wheat bran and treatment diet ranged from 691g/kg DM in T3 to 753g/kg DM in T1. The highest effective degradability of DM (631.8g/kg DM) in dietary ingredients was recorded in wheat bran and 516.3g/kg DM in T1 treatment diet while the lowest effective degradability of DM (246.7g/kg DM) in dietary ingredients was recorded in pasture hay and 487.4g/kg DM in T3 treatment diet.

| Ingredients and treatment diets | Degradability parameters |            |        |             |              |
|---------------------------------|--------------------------|------------|--------|-------------|--------------|
|                                 | a (g/kgDM)               | b(g/kg DM) | c/hour | PD (g/kgDM) | ED (g/kg DM) |
| <b>Ingredients</b>              |                          |            |        |             |              |
| Pasture hay                     | 78                       | 462        | 0.023  | 540         | 246.7        |
| Lablab Purpureus                | 182                      | 497        | 0.072  | 679         | 501.5        |
| Noug seed cake                  | 190                      | 586        | 0.058  | 776         | 536.8        |
| Wheat bran                      | 345                      | 521        | 0.049  | 866         | 631.8        |
| Maize grain                     | 276                      | 568        | 0.043  | 844         | 570.3        |
| <b>Treatment diets</b>          |                          |            |        |             |              |
| T1                              | 256                      | 497        | 0.044  | 753         | 516.3        |
| T2                              | 211                      | 509        | 0.056  | 720         | 507.9        |
| T3                              | 187                      | 504        | 0.059  | 691         | 487.4        |
| T4                              | 176                      | 523        | 0.067  | 699         | 503.5        |
| T5                              | 177                      | 519        | 0.072  | 696         | 510.7        |

**Table 4:** In-sacco dry matter degradability parameters of dietary ingredients and treatment diets

DM = Dry matter; a= Rapidly soluble (degradable) fraction; b= Slowly degradable fraction; PD= Potential degradability; c= Degradation rate; ED= Effective degradability; T1=430g of grass hay+100%CM or 400g CM; T2=430g+75%CM+25%LP; T3=430g+50%CM+50%LP T4=430g+25%CM+75%LP; T5=430g+100%LP or 400g LP.

## Conclusion

The result of present study revealed that sole Labab Purpureus (100% Lablab Purpureus) is a potential alternative supplementation with relatively high level of protein, nitrogen degradation and undegradable protein for sheep. The next recommended supplementation according to the study was 75% Lablab Purpureus and 25% concentrate mixture.

## References

- Melaku SA (2001) Evaluation of selected multipurpose trees as feed supplements in tef (*Eragrostis tef*) straw based feeding of Menz sheep. Humboldt-Universität zu Berlin.
- Birhan M, Adugna T (2014) Livestock feed resources assessment, constraints and improvement strategies in Ethiopia. *Middle-East Journal of Scientific Research* 21: 616-622.
- Preston TR, Leng RA (1987) Matching ruminant production systems with available resources in the tropics and sub-tropics.
- Funte S, Negesse T, Legesse G (2010) Feed resources and their management systems in Ethiopian highlands: The case of Umbulo Wacho watershed in Southern Ethiopia. *Tropical and subtropical agroecosystems* 12: 47-56.
- Melaku S (2004) Feed intake, digestion kinetics and rumen volatile fatty acids in Menz rams supplemented with Lablab Purpureus or graded levels of *Leucaena pallida* 14203 and *Sesbania sesban* 1198. *Animal Feed Science and Technology* 117: 61-73.
- Nurfeta A, Tolera A, Eik LO, Sundstøl F (2009) Feeding value of enset (*Ensete ventricosum*), *Desmodium intortum* hay and untreated or urea and calcium oxide treated wheat straw for sheep. *Journal of Animal Physiology and Animal Nutrition* 93: 94-104.
- Diribsa M, Urgie M, Duguma G (2016) Effects of supplementation with cajanu cajan, lablab Purpureus or their mixture on feed utilization, growth and carcass characteristics of Horro sheep fed a basal diet of natural grass hay. *J Bio Agri Health Care* 6.
- Kelrich K (1990) Official methods of analysis. Arlington, VA: Association of Official Analytical Chemists/AOAC 15.
- Van Soest PJ, Robertson JB (1985) Analysis of forages and fibrous foods. Cornell University.
- Tilley JM, Terry DR (1963) A two-stage technique for the in vitro digestion of forage crops. *Grass and forage science* 18: 104-11.
- Ørskov ER, McDonald I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. *Journal of Agri Sci* 92: 499-503.
- McDonald P, Edwards AR, Greenhalgh DFJ, Morgan AC (2002) *Animal Nutrition*. 6th ed. Prentice Hall, London 245-477.
- Chen XB (1995) Neway excel: an excel application program for processing feed degradability data. International Feed Resources Unit. Rowett Research Institute Aberdeen UK.
- SAS Institute (2004) *Sas/ETS 9.1 user's Guide*. SAS Institute.
- Dereje K (2012) Evaluation of Multi Nutrient Blocks and Activated Effective Microorganisms on Intake, Digestibility, Body Weight Changes and Carcass parameters of Intact Horro Rams Fed Rhodes Grass Hay 34-36.
- Yadeta JF, Leta MU (2020) Effect of Feeding Graded Levels of Wild Silver Leaf Desmodium (*Desmodium Uncinatum*) on Growth and Bodyweight Change of Horro Sheep Fed Basal Diet of Natural Pasture Hay. *Journal of Biology Agriculture and Healthcare* 10.
- Gemedu AS, Mekasha Y (2016) Body weight gain and testicular growth of Horro rams supplemented with noug seed cake and wheat bran mix under grazing management in western Ethiopia. *Journal of Scientific Footprints* 4: 49-60.
- Amole TA, Oduguwa BO, Shittu O, Famakinde A, Okwelum N, et al. (2013) Herbage yield and quality of Lablab Purpureus during the late dry season in western Nigeria. *Slovak Journal of Animal Science* 46: 22-30.
- Mediksa T, Urgie M, Animut G (2016) Effects of different proportions of *Pennisetum Purpureum* silage and natural grass hay on feed utilization, milk yield and composition of crossbred dairy cows supplemented with concentrate diet. *Journal of Biology, Agriculture and Healthcare* 6: 59-71.
- Worku A, Animut G, Urge M, Gebeyew K (2015) Effect of different levels of dried Sugar Cane tops inclusion on the performance of Washera sheep fed basal diet of Grass Hay, Ethiopia. *Journal of Advances in Dairy Research* 3: 1-5.
- Solomon M (1992) The effect of method of processing of oil seed cakes in Ethiopia on their nutritive value (Doctoral dissertation, PhD. Thesis, University of Bonn, Germany).



Advances In Industrial Biotechnology | ISSN: 2639-5665

Advances In Microbiology Research | ISSN: 2689-694X

Archives Of Surgery And Surgical Education | ISSN: 2689-3126

Archives Of Urology

Archives Of Zoological Studies | ISSN: 2640-7779

Current Trends Medical And Biological Engineering

International Journal Of Case Reports And Therapeutic Studies | ISSN: 2689-310X

Journal Of Addiction & Addictive Disorders | ISSN: 2578-7276

Journal Of Agronomy & Agricultural Science | ISSN: 2689-8292

Journal Of AIDS Clinical Research & STDs | ISSN: 2572-7370

Journal Of Alcoholism Drug Abuse & Substance Dependence | ISSN: 2572-9594

Journal Of Allergy Disorders & Therapy | ISSN: 2470-749X

Journal Of Alternative Complementary & Integrative Medicine | ISSN: 2470-7562

Journal Of Alzheimers & Neurodegenerative Diseases | ISSN: 2572-9608

Journal Of Anesthesia & Clinical Care | ISSN: 2378-8879

Journal Of Angiology & Vascular Surgery | ISSN: 2572-7397

Journal Of Animal Research & Veterinary Science | ISSN: 2639-3751

Journal Of Aquaculture & Fisheries | ISSN: 2576-5523

Journal Of Atmospheric & Earth Sciences | ISSN: 2689-8780

Journal Of Biotech Research & Biochemistry

Journal Of Brain & Neuroscience Research

Journal Of Cancer Biology & Treatment | ISSN: 2470-7546

Journal Of Cardiology Study & Research | ISSN: 2640-768X

Journal Of Cell Biology & Cell Metabolism | ISSN: 2381-1943

Journal Of Clinical Dermatology & Therapy | ISSN: 2378-8771

Journal Of Clinical Immunology & Immunotherapy | ISSN: 2378-8844

Journal Of Clinical Studies & Medical Case Reports | ISSN: 2378-8801

Journal Of Community Medicine & Public Health Care | ISSN: 2381-1978

Journal Of Cytology & Tissue Biology | ISSN: 2378-9107

Journal Of Dairy Research & Technology | ISSN: 2688-9315

Journal Of Dentistry Oral Health & Cosmesis | ISSN: 2473-6783

Journal Of Diabetes & Metabolic Disorders | ISSN: 2381-201X

Journal Of Emergency Medicine Trauma & Surgical Care | ISSN: 2378-8798

Journal Of Environmental Science Current Research | ISSN: 2643-5020

Journal Of Food Science & Nutrition | ISSN: 2470-1076

Journal Of Forensic Legal & Investigative Sciences | ISSN: 2473-733X

Journal Of Gastroenterology & Hepatology Research | ISSN: 2574-2566

Journal Of Genetics & Genomic Sciences | ISSN: 2574-2485

Journal Of Gerontology & Geriatric Medicine | ISSN: 2381-8662

Journal Of Hematology Blood Transfusion & Disorders | ISSN: 2572-2999

Journal Of Hospice & Palliative Medical Care

Journal Of Human Endocrinology | ISSN: 2572-9640

Journal Of Infectious & Non Infectious Diseases | ISSN: 2381-8654

Journal Of Internal Medicine & Primary Healthcare | ISSN: 2574-2493

Journal Of Light & Laser Current Trends

Journal Of Medicine Study & Research | ISSN: 2639-5657

Journal Of Modern Chemical Sciences

Journal Of Nanotechnology Nanomedicine & Nanobiotechnology | ISSN: 2381-2044

Journal Of Neonatology & Clinical Pediatrics | ISSN: 2378-878X

Journal Of Nephrology & Renal Therapy | ISSN: 2473-7313

Journal Of Non Invasive Vascular Investigation | ISSN: 2572-7400

Journal Of Nuclear Medicine Radiology & Radiation Therapy | ISSN: 2572-7419

Journal Of Obesity & Weight Loss | ISSN: 2473-7372

Journal Of Ophthalmology & Clinical Research | ISSN: 2378-8887

Journal Of Orthopedic Research & Physiotherapy | ISSN: 2381-2052

Journal Of Otolaryngology Head & Neck Surgery | ISSN: 2573-010X

Journal Of Pathology Clinical & Medical Research

Journal Of Pharmacology Pharmaceutics & Pharmacovigilance | ISSN: 2639-5649

Journal Of Physical Medicine Rehabilitation & Disabilities | ISSN: 2381-8670

Journal Of Plant Science Current Research | ISSN: 2639-3743

Journal Of Practical & Professional Nursing | ISSN: 2639-5681

Journal Of Protein Research & Bioinformatics

Journal Of Psychiatry Depression & Anxiety | ISSN: 2573-0150

Journal Of Pulmonary Medicine & Respiratory Research | ISSN: 2573-0177

Journal Of Reproductive Medicine Gynaecology & Obstetrics | ISSN: 2574-2574

Journal Of Stem Cells Research Development & Therapy | ISSN: 2381-2060

Journal Of Surgery Current Trends & Innovations | ISSN: 2578-7284

Journal Of Toxicology Current Research | ISSN: 2639-3735

Journal Of Translational Science And Research

Journal Of Vaccines Research & Vaccination | ISSN: 2573-0193

Journal Of Virology & Antivirals

Sports Medicine And Injury Care Journal | ISSN: 2689-8829

Trends In Anatomy & Physiology | ISSN: 2640-7752

Submit Your Manuscript: <https://www.heraldopenaccess.us/submit-manuscript>