
Introduction
	 Recirculating Aquaculture Systems (RAS) are used in land-based 
aquaculture production. In recent decades, they have become increas-
ingly important, as they are based on efficient water recycling and 
treatment and consume less water per kg of fish produced. In RAS, 
the rearing conditions are stable throughout the year. Typically, low 
volumes of effluents are discharged from a RAS, but the effluent is 
very nutrient-rich and requires end-of-pipe treatment. Nutrients such  
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as nitrate with eutrophication properties in the environment need to 
be removed. Various technologies are available for nitrate removal, 
including ion exchange, adsorption, membrane separation, electrodi-
alysis, and biological denitrification [1,2]. Woodchip bioreactors are 
passive systems for nitrate removal. In recent years, woodchip biore-
actors have been used in treating agricultural water [3], effluents from 
animal husbandry [4], stormwater [5], and RAS water [6,7].

	 Biological denitrification is carried out by microbes which use ni-
trate as their electron acceptor and organic substances as an electron 
donor to get energy from organic matter for microbial growth [8]. 
In woodchip bioreactors, the diverse communities include e.g., Acid-
ithiobacillales, Desulfovibrionales, Rhodocyclales, and Chlorobiales 
with the key denitrifying communities Burkholderiales, Pseudomo-
nadales, Rhizobiales, and Rhodobacterales but they vary in different 
systems, conditions, or by woodchip species [9].

	 Biological denitrification can be classified as heterotrophic and 
autotrophic. In autotrophic denitrification, hydrogen, iron or sulfur 
compounds are used as the energy source and inorganic carbon as the 
carbon source [10]. The heterotrophic denitrifiers use organic carbon 
compounds as a carbon source [11]. Watersoluble substances (meth-
anol, acetic acid, glucose) are used as a carbon source for denitrifica-
tion [12-14], but some of them pose risks during storage, transporta-
tion, and operation due to their toxicity and inflammability [2].

	 Woodchips consist of a porous matrix with high hydraulic conduc-
tivity and a large specific surface area for microorganisms to attach to 
[15]. During incomplete denitrification, greenhouse gas nitrous oxide 
(N2O) can be formed, which has a global warming potential 265-298 
times higher than carbon dioxide (CO2, [16] and ozone-depleting 
properties [17]. Additionally, methane (CH4) is a greenhouse gas with 
28-fold (including indirect effects) warming potential compared to 
CO2 [18]. Both can be released from the denitrifying bioreactors de-
rived from decaying organic matter [15].

	 In woodchip bioreactors, woodchips act as a growth surface for 
microbial biofilm and as a source of carbon [19]. The aim of denitrifi-
cation is to convert nitrate (NO3

-) into nitrogen gas (N2) and release it 
into the atmosphere [20]. It is a stepwise process catalyzed by enzymes 
(nitrate reductase, nitrite reductase, nitric oxide reductase, nitrous ox-
ide reductase) and carried out by denitrifiers, including Pseudomonas, 
Bacillus, Thiobacillus, and Propionibacterium [21]. Typically, nitrate 
removal rates of 39 g NO3-N m-3 d-1 [6], 222 g NO3-N m-3 d-1 [18]-> 
2‑22 g NO3-N m-3 d-1 [18], and 7.2 ±9.6 g N m-3 d-1 (n=27, [22]) have 
been achieved. As early as in 1995, woodchips were assessed as a 
suitable and slowly degrading carbon source for denitrifying microor-
ganisms [23-25].

	 Incomplete denitrification can produce N2O as a by-product in 
sub-ideal conditions [15], which can depend on many parameters, 
e.g., oxygen (anoxic conditions required for the reductase enzymes, 
[26]) and carbon availability (N and C are needed to ensure the pres-
ence of electron acceptors and electron supply, [26]), temperature, 
redox potential, and microbial population (physical factors affect the 
availability of e.g., oxygen and carbon, and microbial activity, [26];  

Lindholm-Lehto PC, J Aquac Fisheries 2025, 9: 101
DOI: 10.24966/AAF-5523/1000101

HSOA Journal of
Aquaculture & Fisheries

Research Article

Petra Camilla Lindholm-Lehto*

Aquatic Production Systems, Natural Resources Institute Finland (Luke), 
Survontie 9A, FI-40500 Jyväskylä, Finland

Formation of Greenhouse Gases 
in Woodchip Denitrification 
Treating Aquaculture Effluents 
– A Case Study

Abstract
	 Woodchip bioreactors are used to carry out nitrate removal of 
nutrient-rich aquaculture effluents via denitrification. In certain con-
ditions, greenhouse gases (GHG)s nitrous oxide (N2O), methane 
(CH4), and carbon dioxide (CO2) may be formed which have high 
global warming potentials (N2O 265 298 times and CH4 28 times that 
of CO2). This study focused on monitoring the GHGs (N2O, CO2, and 
CH4) at the woodchip bioreactor, treating the recirculating water of a 
recirculating aquaculture system (RAS) rearing rainbow trout (On-
corhynchus mykiss) for one year. High nitrate removal (on average 
18 g N m-3 d-1, up to 98%) were achieved. The highest rate of N2O 
removal (ranged from 0 to 45 µg m-2 h-1, 0 13.4 mg CO2-eq m-2 h-1), 
CO2 (10-450 mg m-2 h-1), and CH4 (from 0.1 to 2.5 mg m-2 h-1, 2.8-70 
mg CO2-eq m-2 h-1) were observed in the warmer summer period, 
likely due to increased microbial actions.
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[27,28]). The availability of carbon is one of the key factors which 
regulates the proportion of incomplete denitrification and N2O for-
mation [29]. The availability of carbon may change with bioreactor´s 
operation age [9].

	 Environmental factors, such as carbon availability [30] or tem-
perature [6] are crucial in controlling denitrification. Temperature 
affects all microbial activities, including activity in the hydrolysis of 
solid substrate and nitrate reduction. At a low temperature, the effi-
ciencies of those activities decrease, leading to a decreased denitrifi-
cation [31] due to suboptimal conditions. For example, denitrification 
and NO3 removal efficiency may reduce at low water temperatures to 
10-20% at 5 ºC [32]. In a study by Shen et al. [33], nitrate removal 
efficiency decreased from 92.5% to 69% (at 15 ºC) and to 50% (at 5 
ºC). Additionally, Cameron and Schipper [33] reported nitrate remov-
al that was 1.2-2.3 times higher at 23.5 ºC than at 14 ºC, although a 
higher temperature may lead to the faster microbial decomposition of 
the carbon source [34] and the release of CH4 and CO2 [15,35].

	 The Hydraulic Retention Time (HRT) of a denitrification reactor 
has an impact on nitrate removal efficiency. For example, Wang and 
Wang [16] and Gibert et al. [19] showed that decreased HRT led to in-
creased effluent nitrate concentration, while longer HRT led to higher 
nitrate removal efficiency. Audet et al. [36] reported that HRT above 
60h favored NO3 removal and low N2O emissions. However, lower 
CH4 production has been reported with decreased HRT (2 h HRT: 
0.51 g C m3 day-1, 8 h HRT: 1.50 g C m3 day-1, [17]).

	 In our previous studies [37,38], high nitrogen removal efficien-
cy was reported in passive woodchip denitrification, with low or 
absent toxic or harmful compounds. This experiment was motivated 
by studying the GHGs (CO2, CH4, and N2O) which may be released 
from the woodchip bioreactor at four sampling points to assess the 
bioreactor’s efficiency and seasonal changes in concentrations. It was 
hypothesized that the nitrate removal efficiency and formation of un-
wanted N2O would be influenced by the colder winter temperatures.

Materials and Methods
Experimental setup

	 The experiment was conducted at the Laukaa fish farm (April 
2021February 2022) of Natural Resources Institute Finland (Luke), 
using a pilot-scale RAS (FREA Aquaculture solutions, Denmark). 
The full description of the RAS has been reported in Pulkkinen et al. 
[39].

	 The RAS consisted of two identical units, each unit with two 5 m3 
tanks and a 1 m3 space for sludge cones, which collect settleable solid 
material and uneaten feed. From the tanks, water flowed through a 
drum filter (60 µm mesh size, Hydrotech HDF800, Veolia, France) 
and two parallel 2.5 m3 fixed bed bioreactors filled with 1.5 m3 Saddle 
chips (KSK Aqua, Denmark). Water flowed (water flowrate measured 
with Fluxus F501, Flexim, Germany) through a 2.24 m3 degassing 
unit and a 0.74 m3 pump sump. Finally, it was pumped through a 
low-head oxygenator (FREA, Aquaculture Solutions, Denmark) back 
to the fish tanks. Dissolved oxygen (Oxi:lyser, s::can, Austria) was 
monitored online and maintained above 8.0 mg L-1 in the rearing 
tanks. The measurement data were stored on an industrial computer 
(Con::cube, S::can, Austria).

	 The water temperature was adjusted to 12.8 ºC by controlling 
the hall air temperature. The pH was maintained at 7.5 (ProMinent, 
Germany) by adding dissolved sodium bicarbonate to the pump 
sumps (EJ-R, Iwaki, Japan). Clean inlet water (Watson Marlow 630, 
Spirax-Sarco Engineering, UK) was led from the oligotrophic Lake 
Peurunka (62.44886, 25.85201, area 694 ha, 59 600 m3). The inlet 
water was a 1:1 mixture of surface water (depth of 4 m) and the apho-
tic layer (depth of 8 m). Replacement water from Lake Peurunka was 
taken at 500 L kg feed -1 (5.2–7.2 m3 d-1).

	 A selected proportion of the circulating water was treated by a 
passive water treatment system, which included a woodchip biore-
actor for nitrogen removal, wetland to control the Biological Oxygen 
Demand (BOD) and the Chemical Oxygen Demand (COD), and sand 
filtration for suspended solids and organic carbon removal [37,39]. 
The woodchip bioreactor was 14 m x 9 m (=118 m2, 50 m3) and 1.5 
m deep (1 m+0.5 m dry layer) of birch wood chips with porosity of 
0.65. A 0.5m layer of dry woodchips on top were designed to act as an 
insulating layer during cold winters. Water was channeled from one 
side of the bioreactor with two perforated pipes 3.3 m and 4.6 m long 
at the base (Figure 1). The HRT of the woodchip bioreactor was on 
average 2.2 d (0.9-7.8 d) (Supplementary Figure S1).

	 The LongTerm Average (LTA) annual temperature (1961–2020) in 
central Finland (Jyväskylä) is 4.2°C, and the average annual precip-
itation is 621 mm (Finnish Meteorological Institute 2023). In 2021, 
annual precipitation was 675.3mm (Finnish Meteorological Institute  

Figure 1: Schematic figure of the woodchip bioreactor (width 3.3 m, 
length 9 m) with inlet and outlet pipes (blue), sampling cones (yellow, 
1-4), and inlets for maintenance (light blue). The direction of the gradient 
has been marked with a red arrow.

Supplementary Figure S1: Replacement water from Lake Peurunka 
(red, L kg-1 feed) and from the passive water treatment system (gray, L 
kg-1 feed), and hydraulic retention time (HRT, blue, d) at the woodchip 
biofilter.
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2023). Of the total precipitation, approximately 50% falls as snow. 
Snow cover typically appears in mid-November and melts in late 
April. The coldest month is February (-7.4 °C), and the warmest is 
July (17.0 °C). In central Finland (Jyväskylä), the average snow cov-
erage duration is 148 days and snow depth is 40-60 cm (Finnish Me-
teorological Institute 2023). The local temperature and snow cover 
data are shown in Supplementary (Figure S2) (Finnish Meteorologi-
cal Institute 2024).

	 In the experiment, a total of 3164 one-year-old vaccinated full 
female rainbow trout (Oncorhynchus mykiss) was reared. The fish 
originated from the Hanka-Taimen hatchery (Hankasalmi, Finland). 
Their average weight was 494 g, with a total biomass of 1564 kg at 78 
kg m-3. The fish were fed with an automated feeding system (T Drum 
2000, Arvo-Tec, Finland) with a commercial fish feed (BioMar Orbit, 
3.5 mm and 6 mm), resulting in a Feed Conversion Ratio (FCR) of 
1.2. Supernumerary fish were regularly removed to maintain the tank 
biomass and fish density at a suitable level. The fish were visually 
inspected on a daily basis to monitor their health and well-being.

	 The study followed the protocols approved by the Luke Animal 
Care Committee, Helsinki, Finland, and EU Directive 2010/63/EU 
for animal experiments.

Water quality parameters

	 At the woodchip bioreactor, the temperature was measured using 
a YSI EXO probe (Xylem, USA) and a HOBO Pendant (MX2201, 
Onset Computer Corporation, USA). Oxygen was measured using 
YSI EXO, YSI ProODO, and Ponsel OPTOD optical probes (Aquala-
bo Servises SA, France) as explained in Pulkkinen et al. [39].

	 Water samples were taken from the inlet and outlet of the woo-
dchip biofilter to measure the following variables. Water samples 
were collected in clean highdensity polyethene (HDPE) jars and 
stored frozen until further analysis. The total nitrogen (Procedure 
8038 Nessler, TAN, 0.8 mg L-1), nitrite-N (LCK341, 0.105–0.108 mg 
L-1), nitrate-N (LCK340, 5-35 mg L-1 and LCK342, 44.2–65.4 mg 
L-1), COD (LCK1414, 5-60 mg L-1), sulfate (SulfaVer, Permachem® 
reagents, 40-150 mg L-1), and phosphate-P (LCK349, 0.051.50 mg 
L-1) were analyzed with quick spectrophotometric tests for DS 3900 
(Hach, Loveland, USA). The water alkalinity (88.3–113.1 mg L-1) 
was measured by a standard titration method ISO 9963-1:1994 (Ti-
traLab AT1000, Hach, Loveland, USA), and turbidity (5.5–6.6 NTU) 
with a Hach 2100q Turbidimeter (Hach, Loveland, USA).

GHG flux measurements

	 The N2O, CH4, and CO2 emissions from the woodchip bioreactor 
were measured using a static chamber method with Polypropylene 
(PP) cones (90 cm in height, diameter 15 cm) and PP cover with a 
rubber collar (n=4, height 10 cm, diameter 15 cm). The cones were 
pre-installed in the woodchip bed at a depth of 10 cm. The cones were 
placed on both sides (3 m apart) and different distances from the ef-
fluent manifold at the inlet side of the woodchip bioreactor (Figure 1) 
to give a comprehensive overview of the bioreactor efficiency.

	 The samples were taken on average once a month (4/20212/2022) 
but more frequently in the summer. First, the cones were closed with 
covers, and gas samples of 20 mL were taken with a 60 mL polypro-
pene (PP) syringe at 2 min intervals from the headspace of the cham-
ber. In each measurement, 20 mL of chamber air was sampled through 
a rubber septum with a polypropylene syringe (BD Plastipak, Becton, 
Dickinson and Company, Franklin Lakes, NJ, USA) and transferred 
into pre-evacuated 20 mL glass vials (Exetainer, Labco Ltd., High 
Wycombe, UK). The air in the chamber was mixed with one syringe 
flush before each sampling.

Chemical analysis

	 The GHG analyses were performed with a gas chromatograph 
(GC, Agilent 6890N, Agilent Technologies, Santa Clara, CA, USA), 
a Flame Ionization Detector (FID), and an Electron Capture Detec-
tor (ECD). The method for Agilent 7890A GC with SP1 7890-0468 
configuration (Supplementary Figure S3) was used to analyze GHGs 
(CO2, CH4, N2O), modified from Nieminen et al. (2015). The system 
included three valves and two columns (G3591-81004 and G3591-
81121). The detector FID was used to detect CH4 and CO2, and 
ECD to detect N2O. The system was modified for using automated 
headspace sampling (Gilson GX-271).

	 At the GC, the following conditions were maintained: valve tem-
perature 80 ºC, oven temperature 70 ºC, methanizer temperature 375 
ºC, sample loop 2 mL, and column flow (N2) 21 mL min-1 (at 60 ºC). 
At FID, a temperature of 250 ºC, H2 flow of 48 mL min-1, airflow of 
350 mL min-1, and make-up (N2) of 2 mL min-1 were used. At the 
ECD, the temperature was 350 ºC, and the make-up gas (Ar/ 5% CH4) 
was 2 mL min-1.

Supplementary Figure S2: Snow depth (cm), air temperature (ºC) and 
nitrate (NO3-N) removal efficiency (%) in central Finland near the area of 
the experiment (April 2021-February 2022).

Supplementary Figure S3: Configuration of SP1 7890-0468 in GC anal-
ysis of gaseous samples.
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	 A standard gas mixture (AGA Gas AB, Lidingö, Sweden) of com-
pressed air with 29.9 mg L-1 of N2O, 201 mg L-1 CH4, and 3010 mg 
L-1 CO2 was used for the daily calibration and preparation of the cal-
ibration curve. Concentrations in the samples were determined based 
on external calibration (0; 0,5; 1; 5; 15; 20 mL of standard gas mix-
ture). Cumulative fluxes were calculated by assuming linear changes 
between subsequent measurements. The Limits Of Detection (LOD) 
and Quantification (LOQ) for the GC analysis were 24.6 µg L-1 and 
162.2 µg L-1 for N2O, 5.86 mg L-1 and 89.3 mg L-1 for CO2, and 157.0 
µg L-1 and 718.9 µg L-1 for CH4.

Statistical analysis

	 A statistical analysis of the GHGs was performed using IBM SPSS 
Statistics (IBM Corp.©, version 27.0.1.0, Armonk, NY, United States). 
Statistically significant differences between normalized results of 
GHGs (N2O vs. CO2; N2O vs. CH4; CH4 vs. CO2, nitrate removal (%) 
vs. temperature, and nitrate removal efficiency (%) vs. HRT) at diffe-
rent time points were calculated with an independent samples t-test at 
a statistical significance level of p < 0.05.

	 LODs and LOQs of GC analyses were determined with a regres-
sion analysis of variance (ANOVA) test. The limit for the statistical 
significance level was set at p < 0.05.

Results
Water quality

	 Nitrate-N decreased from 65 mg L-1 to below 20 mg L-1 during the 
woodchip bioreactor, and pH decreased from 8 to 6 (Figures 2A and 
2B). Overall, lower values were detected from the fall of 2021to the 
spring of 2022. Concentrations of ammonium and nitrate-N remained 
very low throughout the experiment. Additionally, alkalinity was 
higher overall before the biofilter (up to 70 mg L-1 vs. 2045 mg L-1) 
and fluctuated during the experiment. Concentrations of sulfate and 
phosphate remained quite constant throughout the experiment (below 
30 mg L-1, (Figures 3A&3B)). However, some increased COD values 
were detected in the beginning of the experiment.

	 The nitrate removal rate ranged from 7 to 26 g N m-3 d-1 (on aver-
age 18 g N m-3 d-1) throughout the experiment. HRTs showed a mod-
erate positive correlation with NO3-N removal efficiency (R2=0.340; 
Supplementary (Figure S4)).

	 The temperature ranged between 5 and 23 ºC at the woodchip bio-
filter (Supplementary Figure S5A). The results marked in blue were 
measured in the pipeline back to the RAS. Supplementary Figure  

S5 B shows that the inlet water from the RAS contained 512 mg L-1 
of dissolved oxygen. The oxygen content decreased rapidly and re-
mained very low in the following steps of anaerobic denitrification.

	 The inflow to the woodchip bioreactor ranged from 1 to 14 m3 d-1 
(Figure 4). The outflow followed the trend of the inflow although it 
varied occasionally due to the addition of lake water to the inlet from 
Lake Peurunka and supernatant from the sludge treatment to the out-
let flow.

Figure 2: Axis on the left: concentrations of ammonium (NH4-N, mg L-1), 
nitrite (NO2-N, mg L-1), nitrate (NO3-N, mg L-1), pH, and turbidity (NTU); 
axis on the right: alkalinity (mg L-1) before (A) and after (B) the woodchip 
bioreactor.

Figure 3: Concentrations (mg L-1) of sulfate (SO4
2-), phosphate (PO4-P), 

and COD before (A) and after (B) the woodchip bioreactor.

Supplementary Figure S4: HRT, d from April 2021 to November 2021 
plotted against NO3-N removal efficiency, %.

Supplementary Figure S5: Temperature (ºC, A) and dissolved oxygen 
(mg L-1, B) before (well 1, green) and after (well 2, red) the woodchip 
biofilter, and in the pipeline back to the RAS (well 3, light blue). Mea-
surements are missing between October 2021 and May 2022 due to in-
strumental failure.

Figure 4: Inflow (m3 d-1) from the RAS to the passive water treatment 
system and the woodchip biofilter and outflow (m3 d-1) back to the RAS.
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GHGs

	 The N2O removal rate ranged from 0 to 45 µg m-2 h-1 (0-13.4 mg 
CO2-eq m-2 h-1, Figure 5), and for CO2 from 10 to 450 mg m-2 h-1 (Fig-
ure 6). The rates of CH4 ranged from 0.1 to 2.5 mg m-2 h-1 (2.8-70 mg 
CO2-eq m-2 h-1, Figure 7). For all the studied compounds, the highest 
rates were observed in the inlet of the woodchip bioreactor (Tubes 
1&2) but decreased rapidly at the outlet end of the bioreactor (Tubes 
3&4). In addition, the rates varied seasonally. The highest removal 
rates were observed in the early spring for CH4 (Figure 7) but in the 
late summer and fall for N2O (Figure 5) and CO2 (Figure 6).

	 The normalized results of N2O positively correlated with those of 
CO2 (p=0.029, t192=1,899). On the other hand, CO2 and CH4 did not 
show a significant correlation (p=0.286, t192=-0.567). This was also 
the case for N2O and CH4 (p=0.073, t192=1,457).

	 The nitrate removal ranged from 66% to 98% (Figure 8, Table 
1). It seemed to follow changes in air temperature (Figure 8, Supple-
mentary Figure S2) but without a statistical significance (positive cor-
relation, p=0.217, t=0.795). The N2O production (based on NO3-N) 
ranged in most cases between 1.3% and 17.2%, excluding two events 
of higher N2O-N production in August and December (Table 1).

Discussion
Nitrate removal

	 In this study, the nitrate removal rates ranged from 7.2 to 26.2 
g NO3-N m-3 d-1 (average 18 NO3-N m-3 d-1). They were somewhat  

Figure 5: Observed N2O removal rates at the woodchip bioreactor (µg 
m-2 h-1) during the one year sampling period. Samples were taken from 
four sampling points (Tubes 1 4; see Figure 1).

Figure 6: Observed CO2 removal rates at the woodchip bioreactor (mg 
m-2 h-1) during the one year sampling period. Samples were taken from 
four sampling points (Tubes 1 4; see Figure 1).

Figure 7: Observed CH4 removal rates at the woodchip bioreactor (mg 
m-2 h-1) during the one year sampling period. Samples were taken from 
four sampling points (Tubes 1-4; see Figure 1).

Figure 8: NO3-N removal (as g NO3-N m-3 d-1 and % removed) with local 
temperature (ºC) during the study period (4/2021-2/2022).

Date of         
measurement

Removal of   
NO3-N, %

N2O-N 
production vs. 

NO3-N, %

Tempera-
ture, ºC

Nitrate remov-
al,   g NO3-N 

m-3 d-1

8.4. 66.1 17.2 2.0 25.3

2.6. 66.6 2.9 23.0 26.2

18.6. 72.5 1.3 22.6 25.8

19.7. 78.9 2.7 16.9 20.0

28.7. 81.5 15.1 26.4 22.0

27.8. 94.1 40.9 11.6 21.4

10.9. 90.3 5.7 11.5 17.1

22.9. 82.4 17.0 4.3 10.4

19.10. 78.7 5.3 -2.0 9.7

9.12. 97.7 48.4 -18.3 18.1

9.1. 62.3 2.0 0.0 n.a.

16.2. 83.8 5.8 1.0 n.a.

Table 1: Removal of NO3-N (%), proportion of produced N2O-N vs. 
NO3-N (%), temperature (ºC), and nitrate removal (g NO3-N m-3 d-1).

n.a.: not analyzed
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higher than in our previous study [38], where the woodchip bioreac-
tor achieved a nitrate removal rate of 11-15 g NO3-N m-3 d-1. In both 
studies, the results were higher than those reported in previous studies 
by Hoffman et al. [40,41] 1.67-2.22 g N d-1 m-3) and Christianson et 
al. [4]; 0.38-7.76 g N d-1 m-3), but in the same range (4.5-16.8 g N d-1 
m-3) as in von Ahnen et al. [7]. The maximum nitrate removal rate (33 
g NO3-N m-3 d-1) of the system was determined by pre-tests at HRT 
of 48 h [30], but this level was not achieved during the experiment.

HRT

	 Bioreactor removal efficiency depends on the HRT. In our study, 
the HRTs ranged from 0.9 d to 7.8 d (Supplementary Figure S2). The 
NO3-N removal was moderately correlated with the HRT (R2=0.340), 
suggesting that longer HRTs might have led to increased nitrate re-
moval (g NO3-N m-3 d-1). This is in line with the results of Jéglot 
et al. [42] and Nordström and Herbert [43]. Both reported increased 
removal of NO3-N and decreased N2O formation at longer HRTs. The 
efficient removal of nitrate is crucial for the commercial farmers who 
use passive systems for denitrification. Poor operation and insufficient 
denitrification may prevent farmers meeting their discharge allowanc-
es and increasing their production [44].

	 Some studies suggest that shorter HRTs favor aerobic conditions 
and hinder denitrification [44,45]. Audet et al. [36,46] stated that N2O 
emissions were higher at HRTs below 60 h (=2.5 days), while Addy 
et al. [47] detected significantly lower NO3 removal and increased 
N2O production in bioreactors with HRTs below 6 h. Even in this 
study, short HRTs may have promoted N2O formation (Supplementa-
ry Figure S4). On the other hand, Davis et al. [17] reported lower CH4 
production from 2 h HRTs compared to 8 and 16 hour HRTs.

Environmental factors

	 Denitrification is directly inhibited by CO2 [2]. The atmospher-
ic CO2 concentration has increased from 280 ppm in 1800s to 400 
ppm today [47,48]. In our study, even higher CO2 concentrations were 
measured suggesting CO2 formation due to microbial actions derived 
from decaying organic matter in the woodchip bed [15]. Increased 
CO2 concentration inhibits electron transport and the consumption of 
electrons during denitrification by suppressing the synthesis and ac-
tivity of the key enzymes [46].

	 Woodchips acted well as a carbon source for the denitrification, 
although some studies suggest that lignocellulosic material must first 
be hydrolyzed into soluble compounds before denitrifying bacteria 
can utilize the material as a substrate [5,49]. However, there are plen-
ty of other microorganisms present in a woodchip biofilter, including 
saprophytic fungi which can degrade woodchip carbon into suitable 
form for denitrifiers [50].

	 As previously stated, denitrification is predominantly an anoxic 
process where N2O production and reduction to N2 depend on the 
local anoxic conditions. Water saturation and soil or woodchip bed 
structure regulate the oxygen supply. They determine the pathways 
through which gaseous and dissolved oxygen, nitrogen species, and 
dissolved organic matter may diffuse to the location of their con-
sumption [26]. In our study, the oxygen content remained from low to 
moderate levels of 1.4-8.5 mg L-1 in the inlet and very low 0.00-0.01 
mg L-1 in the outlet throughout the studied year. This suggests anoxic 
conditions in the system, although a low-oxygenated zones may be 
possible at the front end of the system.

	 Variation in moisture content influences the microbial communi-
ties and biofilter performance [27]. For example, very low moisture 
content slows down microbial activities [51], while a too high mois-
ture content leads to the filling of woodchip pores and restricts the 
transportation oxygen and nutrients [20]. In such cases, water com-
petes with N2O for hydrophilic spots (-OH and -COOH groups, [52]) 
which can lead to increased N2O formation [53,54].

	 Only a few studies have been conducted on the role of denitrifica-
tion at cold temperatures (∼5 °C, [55]). NO3-N removal may decrease 
to about 10-20% due to the effects of temperature on microbial action. 
In this experiment, the woodchip bioreactor was insulated by addi-
tional woodchips on the surface of the moist layer (1.0 m depth of 
active media and 0.5 m of dry woodchips on top, [39]) to prevent the 
bioreactor freezing during the winter.

	 Annual mean efficiencies of bioreactors are often in the range of 
50% [3,41,55]. However, almost complete nitrate removal (%) can be 
achieved at high temperatures (98% at 28ºC, [56]). In this study, the 
NO3-N removal was above 60% even in the winter and reached above 
90% on a few occasions. This suggests that the air temperature did not 
restrict the biofilter efficiency.

	 Jéglot et al. [57] showed that the optimal temperature for NO3 
transformation to N2 was between 20 and 30 ºC. High temperatures 
can only occasionally be achieved in northern latitudes in the summer 
(see Supplementary Figure S2). The pathway of NO3 transformation 
to N2 includes N2O production [55]. At 5-10ºC (or lower), lag phases 
can occur, which leads to slow denitrification and more pronounced 
NO2, NO, and N2O accumulation [55].

N2O formation

	 The highest concentrations of N2O were found at the first sampling 
point (Figure 5, Tube 1), and the lowest at the fourth point (Figure 5, 
Tube 4). This suggests that the denitrification occurred progressively 
along the gradient as the water flowed and proceeded in the woodchip 
biofilter. Similar changes in concentrations were also observed for 
CO2 and CH4 (Figure 6 and 7). This is likely due to changing condi-
tions (e.g., gradient of O2 content, varying microbe communities) in 
the biofilter.

	 The N2O removal rates ranged up to 45 µg N2O m-3 h-1, which 
corresponds 0.1-2.5 mg N L-1, while Audet et al. [31] for example, 
reported lower N2O rates of 1-200 µg N L-1 in a woodchip bioreactor 
treating agricultural water. On the other hand, Maia et al. [20,58] re-
ported higher (0.6-2 mg N2O L-1) formation at 60% moisture content. 
In this study, the main woodchip layer was saturated with water (the 
moisture content in the woodchips was not measured in this study). 
This may have been one factor influencing the observed N2O rates.

	 The highest N2O concentrations were measured in the late summer 
and fall, which may be due to delayed effects of reactions occurring in 
the warmer summer period. This includes increased microbial action 
in the woodchip bed. Overall, N2O formation seemed to follow the 
environmental conditions and biological processes in the woodchip 
bed, and the load in circulating water played a minor role. This is 
supported by the fact that inlet and outlet water flows, nitrate loads, 
and removal did not seem to follow the N2O formation. Additionally, 
none of the water quality measurements was correlated with the N2O 
formation. It is possible that some of the formed and soluble N2O may 
have circulated back to the RAS with the effluent water [11].
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	 In previous studies, 0.003-9.7% of removed NO3 was converted to 
N2O [59,60], and more recently, 1-6% conversion to N2O has been re-
ported (250-1250 m3of aquaculture effluents [9]). Additionally, Audet 
et al. [36] achieved very low N2O-N emissions per NO3-N removal, 
which were from 0.6% to 2.4% on average. In this study, the N2O-N 
formation remained mostly at 1.3-10%, but formation as high as 48% 
was detected. This suggests that the denitrification was at least occa-
sionally incomplete. Based on IPCC evaluation, over 0.75% NO3-N 
conversion to N2O is considered increased pollution [15], and strict 
limitations were not achieved in this experiment. Previously, high 
N2O formation has been found at low carbon availability and high 
nitrate concentrations [29]. This study was conducted on the second 
functioning year of the bioreactor, suggesting that the bioreactor and 
its processes were fully matured.

CH4 and CO2 formation

	 In woodchip biofilter, even CH4 can be produced if nitrate is de-
pleted and CH4 acts as electron acceptor by methanogenic archaea 
[18,61]. Methanogenic archaea and bacteria produce methane in 
anaerobic conditions [60,61]. For example, methane-producing mi-
crobial communities can include Bacillus sp., Clostridium sp., De-
sulfotomaculum sp., and Ruminococcus sp. [62]. However, microbial 
species were not determined in our study.

	 The highest nitrate concentrations in the inlet water were in the 
early summer at the time of the highest methane formation. This sug-
gests that the conditions in the woodchip bed favored CH4 formation, 
although not due to an insufficient nitrate load in the circulating wa-
ter. Theoretically, the CH4 formation at the bioreactor should be low 
when NO3 concentrations remain sufficiently high to suppress meth-
anogens, but this concept requires validation [18]. More likely, CO2 
and CH4 were released from the denitrifying bioreactors derived from 
decaying organic matter [15].

	 In this study, the concentrations of N2O correlated positively with 
the CO2 results (p=0.029), while neither CH4 and N2O (p=0.286) 
nor CH4 and CO2 (p=0.073) showed significant correlations. A sim-
ilar connection between CO2 and N2O was also observed by Maia et 
al. [20] and later by Nieminen et al. [63], although the latter studied 
emissions in soil instead of from a woodchip bioreactor. Even Maia et 
al. [64] did not observe a positive correlation between CO2 and CH4 or 
between CH4 and N2O concentrations. They also suggested that CO2 
was a good indicator of microbial activity in a denitrification bioreac-
tor.

	 The COD in the inlet water was high in the spring and early sum-
mer when methane flux was high. Other gases such as CO2 and CH4 
are released from the denitrifying bioreactors, both derived from 
decaying organic matter [18], which may have been the case in this 
study.

	 In some studies, CH4 has been detected during early operation of 
the bioreactors [25] but has disappeared after a few months, possibly 
as the highly labile carbon in the woodchips was consumed. In this 
case, it was the second functioning year of the fully matured bioreac-
tor, although highly labile carbon may still have been readily avail-
able.

	 The formation of CH4 is connected with methanogens under an-
aerobic conditions and high moisture content [56]. which was prob-
ably the case here in the woodchip bed after a substantial amount  

of snow had melted (Supplementary Figure S3). Many studies have 
shown that moisture content and temperature are the main factors in-
fluencing methane and N2O formation [64-66]). Even increased N2O 
content is expected when moisture content is high [67-74].

Conclusion
	 Nitrate removal (%) remained high in the woodchip biofilter 
throughout the studied year, demonstrating the efficient operation of 
the biofilter. N2O formation was mostly at a low level, but relatively 
high formation was occasionally observed. This suggests that denitri-
fication may have occasionally been incomplete.

	 Unlike the hypothesis, no reduction in the nitrate removal rate (g 
NO3-N m-3 d-1) or increase in N2O formation induced by the cold win-
ter temperatures was observed. The formation of the studied GHGs 
did not follow the conditions in RAS or nitrogen load in the circulat-
ing water. It is more likely that the environmental conditions in the 
woodchip bed played the main role in determining the formed and 
released gases, and some effects may have occurred at a delayed pace. 
Although a thorough study of microbial processes in the woodchip 
bed were not the goal of this experiment but they definitely are an 
interesting subject for further study to fully understand the processes 
behind the formation of GHGs in denitrification.
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