
Introduction

	 Despite significant progress in precision oncology, therapeu-
tic resistance continues to be a major obstacle to achieving durable  
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responses in solid tumors. Targeted treatments, including RTK in-
hibitors, Ras/MAPK pathway blockers, PI3K/AKT inhibitors, and 
CDK4/6 antagonists, frequently lose effectiveness due to adaptive 
signaling, pathway redundancy, and tumor heterogeneity. This review 
reconceptualizes these oncogenic pathways as interconnected sys-
tems, emphasizing how their flexibility enables both initial treatment 
success and the eventual emergence of resistance.

	 Resistance mechanisms fall into two broad categories: intrinsic 
(pre-existing) and acquired (developing during treatment). These of-
ten involve mutations in drug targets, activation of alternative signal-
ing networks, or dynamic interactions within the tumor microenvi-
ronment (TME) [1]. For example, PI3Kα inhibitors in breast cancer 
frequently trigger MAPK pathway reactivation or AKT-independent 
survival signals via SGK1 and mTORC1 [2,3]. Similarly, CDK4/6 
inhibitors face resistance due to RB1 loss, Cyclin E1 overexpression, 
and PI3K pathway crosstalk, leading to unchecked cell cycle progres-
sion [4].

	 Rather than attempting to cover every notable drug targeting these 
pathways, this review focuses on resistance mechanisms and emerg-
ing strategies to overcome them. These include vertical inhibition 
(e.g., dual KRAS and MEK blockade), synthetic lethality (e.g., PI3K 
and CDK4/6 co-inhibition), immune microenvironment modulation 
(e.g., CDK4/6 plus checkpoint blockade), and interventions target-
ing metabolic reprogramming. Together, these approaches shift the 
focus from single-pathway targeting to integrated strategies designed 
to prevent or reverse resistance.

	 By examining resistance mechanisms across RTK, Ras/MAPK, 
PI3K/AKT, and CDK4/6 signaling, this paper underscores the im-
portance of precision oncology strategies that are both targeted and 
adaptable. It explores how feedback signaling, tumor microenviron-
ment dynamics, and pathway redundancy reduce treatment durability, 
while rational combination approaches guided by genomic and pro-
teomic profiling can help restore drug sensitivity and improve patient 
outcomes [5].

Methods
	 This review was based on a literature search using PubMed and 
Google Scholar. The focus was on peer-reviewed articles published 
between 2019 and 2025 that discussed resistance to therapies target-
ing RTK, Ras/MAPK, PI3K/AKT, and CDK4/6 pathways. Preference 
was given to studies that explored resistance mechanisms, combi-
nation treatments, pathway crosstalk, and tumor microenvironment 
changes. Clinical studies involving patients and preclinical studies 
using lab models (such as cell lines or animals) were included if they 
provided insight into why resistance happens or how it might be pre-
vented or reversed. Review articles were used to support background 
information where appropriate.

Core Pathways in Resistance and Targeted Therapy
RTKs: Resistance mechanisms and therapeutic adaptation

	 Receptor Tyrosine Kinases (RTKs) play a critical role in regulat-
ing oncogenic signaling and are key targets in precision oncology.  
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Abstract
	 Precision oncology has improved cancer treatment by aligning 
therapies with the molecular drivers of tumor growth. However, resis-
tance remains a major challenge in treatments targeting RTKs, Ras/
MAPK, PI3K/AKT, and CDK4/6. This review presents these path-
ways as interconnected systems where adaptive feedback, signaling 
redundancy, and metabolic shifts enable tumors to evade inhibition. 
Resistance mechanisms include bypass signaling, RTK recycling, 
altered trafficking, and hypoxia-driven changes in the tumor microen-
vironment. To address these challenges, emerging strategies focus 
on combination approaches such as dual KRAS and MEK blockade, 
CDK4/6 and PI3K co-inhibition, integration with immune checkpoint 
therapies, and metabolic interventions targeting oxidative phos-
phorylation and lactate metabolism. The review highlights the im-
portance of pathway-guided, combination-based strategies informed 
by genomic and proteomic profiling. By incorporating resistance 
adaptation into treatment design, precision oncology can advance 
beyond static molecular targeting toward dynamic and personalized 
approaches that improve long-term disease control.
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Therapies directed at RTKs, especially those targeting EGFR and 
HER2, have demonstrated initial effectiveness but often face wide-
spread resistance. Tumors evade treatment through on-target muta-
tions that alter drug binding, bypass signaling via alternative RTKs, 
and histological or phenotypic adaptations that sustain growth despite 
inhibition [6,7].

	 For example, first- and second-generation EGFR tyrosine kinase 
inhibitors (TKIs) frequently fail due to secondary mutations like 
T790M and C797S, which hinder drug binding [8]. Even third-gen-
eration TKIs such as osimertinib, designed to counteract T790M re-
sistance, eventually lose efficacy due to acquired C797S mutations 
or activation of bypass pathways like MET amplification or HER2 
overexpression [9]. Similarly, HER2-positive cancers treated with 
monoclonal antibodies (e.g., trastuzumab) or small-molecule inhib-
itors (e.g., tucatinib) often develop resistance via truncated HER2 
variants (p95HER2), which evade antibody binding [10].

	 Beyond genetic mutations and bypass signaling, RTK trafficking 
and recycling play a critical role in resistance. Cancer cells internal-
ize RTKs via endocytosis, then recycle them back to the cell surface, 
allowing persistent signaling despite inhibitor presence. For example, 
EGFR recycling via Rab11-mediated trafficking can reactivate MAPK 
and PI3K pathways, sustaining oncogenic signaling even under ty-
rosine kinase inhibitor (TKI) therapy [11]. Similarly, HER2-positive 
tumors often evade Cbl-mediated ubiquitination, avoiding lysosomal 
degradation and enabling continued HER2-driven signaling despite 
therapeutic pressure [12].

	 To address these resistance mechanisms, researchers are investi-
gating ways to block RTK recycling or promote receptor degrada-
tion. Endosome-targeting therapies, such as Rab protein inhibitors, 
dynamin blockers, and lysosomal trafficking disruptors, are designed 
to prevent receptor recycling and accelerate degradation, reducing 
RTK-driven resistance. Preclinical studies have shown that combin-
ing RTK inhibitors with trafficking disruptors can improve antitumor 
efficacy and enhance treatment durability in resistant cancer models 
[13].

	 To counter these adaptive mechanisms, researchers are focusing 
on rational combination therapy. Dual HER2 blockade—combining 
monoclonal antibodies with HER2-selective TKIs—has proven more 
effective in suppressing compensatory signaling than monotherapy 
[14]. Antibody–drug conjugates (ADCs), such as trastuzumab derux-
tecan, offer another approach by delivering cytotoxic payloads direct-
ly to HER2-overexpressing cells, bypassing certain resistance mech-
anisms [15].

	 Another promising strategy involves co-targeting RTKs and 
downstream effectors. In PIK3CA-mutated breast cancers resistant to 
HER2 inhibition, adding PI3Kα inhibitors like alpelisib has improved 
efficacy by disrupting survival pathways activated via HER2 cross-
talk [16]. These multidimensional approaches signal a shift from sin-
gle-agent therapy to integrated treatment strategies aimed at blocking 
molecular escape routes.

	 Ultimately, RTK-targeted therapies must do more than inhibit 
the primary oncogenic driver—they must anticipate and neutralize 
emerging resistance. Future directions include real-time molecular 
monitoring to detect new mutations, feedback loops, and endocytic 
recycling patterns, enabling early therapeutic adjustments tailored to 
evolving resistance profiles [17].

Ras/MAPK Pathway: Targeting oncogenic drivers and 
overcoming resistance

	 The Ras/MAPK pathway is frequently altered in human cancers, 
primarily due to activating mutations in KRAS and BRAF. These 
mutations trigger persistent downstream signaling through MEK 
and ERK, fueling tumor growth, enhancing survival, and reducing 
susceptibility to cell death. While mutant-selective inhibitors such as 
KRAS G12C and BRAF V600E-targeted therapies represent signifi-
cant advancements, resistance tends to emerge rapidly and remains a 
major challenge in treatment [18–20].

	 KRAS G12C inhibitors such as sotorasib and adagrasib initial-
ly show effectiveness by trapping mutant KRAS in its inactive 
GDP-bound form. However, resistance develops through secondary 
KRAS mutations like G12D and G13D, reactivation of receptor ty-
rosine kinases such as MET and HER3, or activation of alternative 
pathways including PI3K/AKT and YAP/Hippo signaling. Similar-
ly, BRAF inhibitors like vemurafenib and dabrafenib, which target 
BRAF V600E-positive melanomas, encounter resistance due to RAF 
dimerization, MEK1/2 amplification, and feedback activation through 
RTKs such as EGFR [22].

	 To counteract this, vertical pathway inhibition has become a cen-
tral strategy. Combining KRAS inhibitors with MEK or ERK inhib-
itors aims to block pathway reactivation through feedback loops and 
escape mutations. Preclinical and clinical data suggest that this lay-
ered approach enhances tumor regression and slows resistance devel-
opment [23].

	 Another promising strategy includes pan-RAF inhibitors and 
SHP2 inhibitors. Pan-RAF inhibitors block both BRAF and CRAF 
dimers, preventing the unintended MAPK activation seen with selec-
tive BRAF inhibitors. SHP2 inhibitors act upstream by shutting down 
RTK-driven RAS activation, disrupting the cascade before resistance 
can take hold [24].

	 Immunotherapy is also being explored. Ras-mutant tumors often 
suppress immune responses, but early findings suggest that combin-
ing KRAS inhibitors with immune checkpoint blockers (e.g., anti–
PD-1) may enhance tumor immunogenicity and improve treatment 
outcomes [25].

PI3K/AKT Pathway: Isoform-specific resistance and ratio-
nal combination therapies

	 The PI3K/AKT pathway is essential for regulating metabolism, 
growth, and survival in various cancers. Genetic alterations such as 
PIK3CA mutations, PTEN loss, and AKT hyperactivation have driv-
en the development of targeted inhibitors. However, therapeutic re-
sponses to these inhibitors are often limited, as tumors adapt through 
pathway redundancy, compensatory survival signaling, and feedback 
activation, reducing long-term efficacy [26].

	 Isoform-selective PI3K inhibitors, such as alpelisib (which targets 
p110α), have improved therapeutic outcomes in PIK3CA-mutated 
cancers. Still, resistance can emerge through AKT-independent mech-
anisms, including SGK1-driven activation of mTORC1 or reactiva-
tion of receptor tyrosine kinases (RTKs) such as HER3 and IGF1R 
[27]. Similarly, tumors with PTEN loss often evade PI3Kα inhibition 
by increasing p110β activity or activating the ERK pathway, reflect-
ing the adaptability of downstream effectors [4].
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	 To overcome these challenges, combination therapies are being 
developed to target multiple points within the PI3K pathway and its 
compensatory networks. Dual PI3K/mTOR inhibition has shown 
promise in preclinical studies, though toxicity remains a concern 
[28]. Another approach pairs PI3K inhibitors with CDK4/6 inhibitors, 
which has demonstrated efficacy in PIK3CA-mutant, endocrine-resis-
tant breast cancers, especially those with PTEN deficiency [16].

	 RTK feedback is a common driver of resistance. PI3K inhibition 
can trigger upregulation of HER2, HER3, or MET, restoring PI3K or 
MAPK activity via alternative adaptors [1]. Combining PI3K inhib-
itors with RTK inhibitors (e.g., alpelisib + trastuzumab) is current-
ly being tested in clinical trials to counteract this escape mechanism 
[29].

	 Additionally, metabolic adaptation allows tumors to survive de-
spite PI3K inhibition. Cancer cells may shift toward glutaminolysis, 
fatty acid oxidation, or lactate metabolism to maintain ATP produc-
tion and biosynthesis, bypassing PI3K-dependent signaling. These 
findings have spurred efforts to combine PI3K/AKT inhibitors with 
metabolic therapies targeting glutaminase, oxidative phosphorylation 
(OXPHOS), or monocarboxylate transporters (MCTs) [30].

CDK4/6 Inhibition: Resistance pathways and strategic 
combinations

	 Cyclin-dependent kinases 4 and 6 (CDK4/6) play a crucial role in 
controlling the G1-to-S phase transition in the cell cycle and are key 
targets in hormone receptor-positive breast cancer. Inhibitors such as 
palbociclib, ribociclib, and abemaciclib have demonstrated substan-
tial clinical benefits when used alongside endocrine therapy, helping 
to slow disease progression in metastatic cases. Despite their effec-
tiveness, resistance frequently develops through various molecular 
mechanisms, limiting long-term therapeutic success [31–33].

	 A major factor influencing CDK4/6 inhibitor sensitivity is the 
functional status of the retinoblastoma (RB) protein. Tumors lacking 
RB expression or carrying RB1 mutations fail to arrest in G1 despite 
CDK4/6 blockade, rendering treatment ineffective [34]. Other resis-
tance mechanisms include Cyclin E1 (CCNE1) amplification, CDK2 
activation, or CDK4/6 upregulation—all of which bypass CDK4/6 
inhibition and restore cell cycle progression [35].

	 Beyond intrinsic resistance, acquired resistance frequently in-
volves activation of alternative signaling pathways. The PI3K/AKT/
mTOR and Ras/MAPK pathways can become hyperactive during 
CDK4/6 therapy, sustaining tumor growth through CDK-independent 
mechanisms [36]. For example, PTEN loss not only drives resistance 
to PI3K inhibitors but also reduces CDK4/6 inhibitor efficacy by ac-
tivating downstream AKT [4]. These findings highlight the need for 
combination strategies that target both cell cycle and survival signal-
ing.

	 Recent research has explored rational drug combinations to coun-
teract resistance. Dual inhibition of CDK4/6 and PI3K has shown 
synergistic effects in PIK3CA-mutant breast cancers, particularly in 
cases with concurrent PTEN loss. Similarly, combining CDK4/6 in-
hibitors with endocrine agents and mTOR inhibitors has demonstrat-
ed enhanced tumor suppression and delayed resistance [37].

	 Immunotherapy is also being investigated. CDK4/6 inhibitors can 
increase antigen presentation, boost T cell infiltration, and sensitize 
tumors to immune checkpoint blockade. Ongoing trials are testing  

combinations of abemaciclib or palbociclib with PD-1/PD-L1 inhibi-
tors to harness both cytostatic and immune-mediated effects [38].

	 In cases of resistance, shifting to CDK2 or CDK9 inhibitors may 
help reestablish cell cycle control, particularly in tumors with Cyclin 
E overexpression. Another potential strategy involves targeting up-
stream regulators of CDK4/6 activity, such as FGFR amplification 
or RAS pathway activation, which contribute to therapeutic escape 
mechanisms [39].

Emerging Themes in Resistance Management
Pathway crosstalk and adaptive signaling

	 A major challenge in precision oncology is the complex inter-
action between signaling pathways, which allows tumors to bypass 
inhibition through alternative routes. When one pathway is blocked, 
compensatory activation of another often occurs, such as MAPK up-
regulation following PI3K inhibition or CDK2/Cyclin E activation in 
response to CDK4/6 blockade [1,40]. These feedback loops reduce 
drug effectiveness but also create new vulnerabilities that can be ad-
dressed through strategic combination therapies.

	 Vertical inhibition approaches, including dual KRAS and MEK or 
ERK blockade, seek to prevent pathway reactivation by targeting mul-
tiple signaling levels [41]. Similarly, combining CDK4/6 inhibitors 
with PI3K inhibitors has shown synergistic effects in PIK3CA-mutant 
models, particularly in cases of PTEN loss where redundancy am-
plifies resistance [16]. These findings support the growing consensus 
that effective cancer control requires multi-targeted treatment strate-
gies guided by molecular profiling.

Synthetic lethality and network disruption

	 Synthetic lethality occurs when the simultaneous disruption of 
two genes or pathways leads to cell death, whereas inhibiting either 
one alone does not. This approach has gained attention as a strategy to 
combat therapy resistance by targeting tumor-specific dependencies 
while minimizing effects on normal cells. Its effectiveness depends on 
accurate biomarker selection to identify patients whose tumors have 
exploitable vulnerabilities. Although best known for PARP inhibitors 
in BRCA-mutated cancers, researchers have now identified synthetic 
lethal interactions in Ras-driven and PI3K-activated tumors, expand-
ing its potential applications in precision oncology [42].

	 For example, co-inhibition of CDK4/6 and PI3K can induce syn-
thetic lethality in hormone receptor–positive, PIK3CA-mutated breast 
cancers. In these cases, CDK4/6 blockade activates survival path-
ways that PI3K inhibition then disrupts, pushing tumor cells toward 
apoptosis instead of dormancy [43]. Other promising synthetic lethal 
combinations include BCL-XL + MEK inhibition in KRAS-mutant 
cancers and SHP2 + KRAS blockade, both currently under clinical 
investigation [5, 55].

	 Emerging research is identifying additional synthetic lethal in-
teractions that could further refine resistance-targeted therapies. One 
promising avenue involves STK11/LKB1 mutations, which disrupt 
AMPK signaling and render tumors vulnerable to metabolic stress. 
Dual inhibition of AMPK and mTOR has shown potential synthetic 
lethality in this context, selectively eliminating STK11-mutant tu-
mors by exploiting their defective energy homeostasis [45].

	 Another developing strategy focuses on targeting the WRN he-
licase in microsatellite instability–high (MSI-H) tumors. WRN is  
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essential for resolving replication stress in MSI-H cancers, and its in-
hibition leads to catastrophic genomic instability and cell death. This 
vulnerability is currently being evaluated in early clinical trials, par-
ticularly for MSI-H colorectal and gastric cancers [46].

Tumor Microenvironment (TME) and resistance modula-
tion

	 The tumor microenvironment (TME) plays a crucial role in re-
sistance to targeted therapies. Components such as cancer-associated 
fibroblasts, myeloid-derived suppressor cells, and extracellular matrix 
proteins protect cancer cells from treatment by activating alternative 
signaling pathways or creating physical and immune barriers [47].

	 Growth factors like HGF and TGF-β released by fibroblasts can 
reactivate the MAPK and PI3K pathways, driving resistance to RTK 
and kinase inhibitors. Similarly, HER3 upregulation in response to 
neuregulin-1 secreted by stromal cells can restore PI3K/AKT signal-
ing despite HER2 blockade [48].

	 Hypoxia is a significant but often overlooked factor in therapy re-
sistance within the tumor microenvironment. Low oxygen conditions 
trigger hypoxia-inducible factors (HIFs), particularly HIF-1α, which 
drive resistance through multiple pathways. HIF-1α promotes VEGF 
expression, stimulating angiogenesis while simultaneously disrupting 
vascular architecture, leading to inefficient drug delivery and reduced 
interstitial perfusion [49]. Concurrently, hypoxia alters metabolic de-
pendencies by shifting tumors toward glycolysis and enhancing RTK 
signaling, sustaining resistance to EGFR, HER2, and MET inhibitors 
despite kinase blockade [50]. To counter these effects, researchers are 
actively investigating therapeutic strategies such as HIF inhibitors 
and hypoxia-activated prodrugs to weaken these survival adaptations 
and improve drug sensitivity [51].

	 Beyond metabolic and signaling adaptations, hypoxia drives epi-
thelial-to-mesenchymal transition (EMT), fostering phenotypic plas-
ticity and the emergence of drug-tolerant cancer cell states. Hypoxic 
tumor niches also alter immune dynamics, as stromal and immune 
modulators upregulate checkpoint regulators like PD-L1, contribut-
ing to immune evasion and diminished immunotherapy efficacy [52].

Metabolic plasticity and therapy escape

	 Cancer cells exhibit remarkable metabolic flexibility, enabling 
them to shift energy production pathways under drug pressure. PI3K 
or CDK4/6 inhibition, which typically reduces glycolysis, may un-
intentionally drive increased oxidative phosphorylation (OXPHOS), 
glutaminolysis, or lipid metabolism as alternative fuel sources [62].
Beyond shifts toward glycolysis and lipid oxidation, mitochondrial 
reprogramming plays a critical role in therapy escape. Many drug-re-
sistant tumors upregulate PGC-1α, a key regulator of mitochondrial 
biogenesis, leading to elevated oxidative phosphorylation (OXPHOS) 
and enhanced survival under targeted inhibition [54]. This adaptation 
provides an alternative energy source, enabling tumors to circumvent 
drug-induced metabolic stress and sustain growth despite pathway 
blockade.

	 Resistant cancer cells also exhibit altered mitochondrial dynam-
ics, characterized by increased fusion and reduced fission, which 
improves energy efficiency and suppresses apoptotic signaling [55]. 
These mitochondrial adaptations have been directly linked to resis-
tance in PI3K, CDK4/6, and KRAS-targeted therapies, highlighting 
mitochondria as a central hub in resistance biology.

	 To counteract these mechanisms, researchers are investigating 
OXPHOS inhibitors and mitochondrial uncouplers as adjuvant thera-
pies to disrupt mitochondrial metabolism and restore drug sensitivity 
in resistant tumors [56]. Combining mitochondrial-targeting agents 
with traditional kinase inhibitors may offer a promising strategy to 
overcome metabolic plasticity and enhance treatment durability.

	 These metabolic adaptations are more than survival mechanisms—
they can actively sustain resistance by ensuring ATP production and 
biosynthesis even when key signaling pathways are blocked. For ex-
ample, lactate, once considered a metabolic byproduct, functions as 
an energy source in some tumors and is transported via monocarbox-
ylate transporters (MCTs), whose upregulation is linked to therapy 
resistance [57].

Non-coding RNAs as resistance mediators

	 Although not yet widely used in clinical practice, non-coding 
RNAs, particularly microRNAs (miRNAs) and long non-coding 
RNAs (lncRNAs), are emerging as key regulators of therapy resis-
tance. These RNAs impact pathways such as PI3K, Ras/MAPK, and 
CDK4/6 while modifying drug sensitivity through gene silencing and 
epigenetic remodeling [58].

	 Examples include miR-21–mediated resistance to EGFR inhibi-
tors and lncRNA HOTAIR–driven modulation of CDK4/6 signaling. 
Additionally, tumor-derived exosomal miRNAs can modify the TME 
or distant tumor sites, priming them for drug insensitivity [59]. Al-
though still an emerging field, RNA-based therapies hold promise as 
future tools for overcoming resistance through epigenetic and tran-
scriptional modulation.

Conclusion

	 Therapeutic resistance remains the defining obstacle in precision 
oncology. As detailed across the RTK, Ras/MAPK, PI3K/AKT, and 
CDK4/6 pathways, resistance mechanisms are rarely driven by single 
mutations alone; rather, they emerge from the interplay of pathway 
crosstalk, tumor microenvironmental influences, metabolic repro-
gramming, and signaling redundancy. These pathways form a dynam-
ic and adaptable network that tumors exploit to maintain growth and 
evade targeted therapies.

	 This review has emphasized that durable clinical responses will 
not result from targeting individual oncogenic nodes in isolation. 
Instead, effective resistance management requires pathway-centric 
strategies that combine vertical inhibition, synthetic lethality, met-
abolic interference, and immune modulation. The growing role of 
molecular profiling and predictive biomarkers further supports a tran-
sition toward personalized treatment adaptation, in which therapy is 
adjusted in response to early resistance signals rather than late-stage 
progression.

	 Importantly, future progress will depend not only on expanding 
the therapeutic toolkit, but on improving the logic that guides drug 
sequencing and combination design. By integrating insights into sig-
naling adaptability, hypoxia-mediated resistance, mitochondrial dy-
namics, and synthetic vulnerabilities, the field can move toward more 
durable control of malignancy. Continued clinical and translational 
research will be essential to convert these insights into treatment 
frameworks that are not only precise, but pre-emptive.
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