

HSOA Journal of

Environmental Science: Current Research

Research Article

Phytochemical Screening and Antimicrobial Activity of *Hyd-noraabyssinicia* Root Extract

Mohammed MA, Adam MIM and Hamadnalla HMY *

Department of Biochemistry, College of Applied Sciences, University of Bahri, Sudan

Abstract

This study was carried out in Khartoum state-Sudan, during March; this plant was collected from Al-Dubibat area, locality of algoze, South Kordofan State, western Sudan. The dried root of Hydnora abyssinicia was extracted successively with (petroleum ether, chloroform, and methanol), The phytochemical screening carried out for different plant roots extracts and showed that it contain high amount of alkaloids in all extract and moderate amount of flavonoids (in chloroform, methanol extracts) and moderate amount of tannins, sterol and triterpenes also moderate amount of cardiac glycoside and high amount of saponins. The antimicrobial activity of extracts were evaluated against four standard bacteria (Gram positive; Bacillus subtilis, Staphylococcus aureus) and (Gram negative; Escherichia coli, Pseudomonas aeruginosa).in addition of one standard fungi (Candida albicans). The result of antimicrobial tests indicated that the methanolic extract inhibited the growth of all microorganisms and most extracts showed same degree of antimicrobial activity. The result provides promising baseline information for the potential use of these crude extracts in the treatment of bacterial and fungal infec-

Keywords: Al-Dubibat area; Folk medicine; Medicinal plants; Phytochemical screening

Introduction

Sudan is the largest country in Africa, it has a wide diversity climate which is responsible for its varied vegetation and very rich flora. Many species of plants grow abundantly in the Sudan and other African countries and are used by the village populations for treatment of

*Corresponding author: Hamadnalla HMY, Department of biochemistry, College of Applied Sciences, University of Bahri, Sudan, E-mail: hamadnalla2009@yahoo.com

Citation: Mohammed MA, Adam MIM and Hamadnalla HMY (2019) Phytochemical Screening and Antimicrobial Activity of Hydnoraabyssinicia Root Extract. J Environ Sci Curr Res 2: 010.

Received: July 28, 2019; Accepted: August 19, 2019; Published: August 28, 2019

Copyright: © 2019 Hamadnalla HMY, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

various disorders [1,2]. The Sudanese folkloric medicine represents a unique blend of indigenous cultures with Egyptian, Indian, Arabian, East and West African cultures [3,4]. In Sudan; plants are the main medicinal source to treat infectious diseases [5], in many developing countries like Sudan, the medicinal plants have played an important role in the treatment of diseases especially in rural areas. The medicinal and aromatic plants contain a number of chemical constituents such as alkaloids, flavonoids, tannins, saponins, glycosides and others isolated and used as an important source of indispensable drugs [6-8]. State that, medicinal plants are known by their required clinical effects on the abnormal living tissues or organs while toxic ones are known by their ability to cause a non-required physiological deviation in animals' bodies, the traditional medicinal plants are increase in both developing and industrialized countries [4,9-11] reported that both literate and illiterate people still use local plants as drugs in many conditions.

Many secondary metabolites of plant are commercially important and find use in a number of pharmaceutical compounds [12]. However, a sustained supply of the source material often becomes difficult due to the factors like environmental changes, cultural practices, diverse geographical distribution, labor cost and selection of the superior plant stock and over exploitation by pharmaceutical industry [13]. The species *Hydnoraabyssinicia* belong to family *Hydnoraceae* locally known as (tartous) was chosen because it's using traditionally in treatment of many abdominal diseases. Phytochemical activities were investigated to detect the effects of antimicrobial.

Objective

The objective of this study is to evaluate the phytochemical profile and the antimicrobial activities of *Hydnora abyssinica* root.

Material and Method

All the chemicals and reagents used in this study were of analytical grade such as chloroform, distilled water, ethanol, methanol, petroleum ether, acetic anhydride, sulphuric acid, gelatine salt, ferric chloride, reagents (Wagner, Hager, and Dragendorffs), aluminium chloride and potassium hydroxide.

Plant material, collection and identification

Hydnora abyssinicia were collected in Septembers 2015 from Al-Dubibat area, locality of algoze, South kordofan State-Sudan and identified in herbarium of natural research Centre and compared with herbarium of Faculty of Science University of Khartoum.

Preparation of crude extracts

50g of the dried roots was weighted and extracted successively with petroleum ether by shaker apparatus for four hours at room temperature. Then extracted with chloroform and was filtrated and dried after extraction, the residual of the powdered plants materials were dried and then extracted again with methanol for 18 hours. The extracts were air dried between each extraction 50g of the dried roots was weighted and extracted successively with petroleum ether by

shaker apparatus for four hours at room temperature. Then extracted with chloroform and was filtrated and dried after extraction, the residual of the powdered plants materials were dried and then extracted again with methanol for 18 hours. The extracts were air dried between each extraction that has involved different solvents; each extract was filtrated through Whitman No 1 filter paper, followed by concentrated under vacuum room. The crude extracts were then kept at -20°C in sterile universal bottles.

Preliminary Phytochemical screening of different extracts of the plant

General phytochemical screening for the active constituents was carried out for plant extracts using the methods carried by [14-16].

Antimicrobial activity

Preparation of nutrient agar media: 28g of powdered nutrient agar was weighted, dispersed in 1 liter of distilled water and allowed to soak for 10 minutes, swirl to mix then sterilized by autoclaving for 15 minutes at 121°C cooled to 47°C mixed well then poured into petri dishes.

Tested organisms

Bacterial organisms: *Bacillus subtitles* (NCTC 8236 Gram positive bacteria).

Staphylococcus aureus (ATCC 25923 Gram positive bacteria). Escherichia coli (ATCC 25922 Gram negative bacteria). Pseudomonas arginosa (ATCC 27853 Gram negative bacteria).

Fungal organisms: Candida albicans (ATCC 7596 Fungi).

In vitro testing of extract for antimicrobial activity

Testing for antibacterial activity: The cup-plate agar diffusion method [17] was adopted with some minor modifications to assess the antibacterial activity of the prepared extracts. One ml of the standardized bacterial stock suspension 108-109 C.F.U/ml were thoroughly mixed with 100ml of molten sterile nutrient agar which was maintained at 45°C. 20ml aliquots of the inoculated nutrient agar were distributed into sterile petri dishes. The agars was left to set and in each of these plates 5 cups (10mm in diameter) were cut using a sterile cork borer (No.5) and agar disk were removed. Alternate cups were filled with 0.1ml sample of each of the extract dilution in methanol using automatic micro liter pipette, and allowed to diffuse at room temperature for two hours. The plates were then incubated in the upright position at 37°C for 18 hours. Three replicates were carried out for each extract against each of the test organism. After incubation the diameters of the resultant growth inhibition zones were measured, averaged and mean values were tabulated.

Testing for antifungal activity: The same method for bacteria was adopted. Instead of nutrient agar. The incubated medium was incubated at 25°C for two days for the *candida albicans*.

Result and discussion

Phytochemical screening of *Hydnoraabyssinicia* and physical properties

Three solvents were used in successive polarities to extract secondary metabolites from *Hydnora abyssinicia* and their properties were cited in table 1.

Table 1 reported the result of extractives values of *Hydnora abyssinicia* as following for methanol 3.22% (Dark brown powder) followed by chloroform 1.24% (brown powder), petroleum ether 0.86% (brown powder) (Table 2).

Extracts	Characteristic	Colour of Extract	Weight	Yield
Methanol	Powder	Dark brown	6.44	3.22
Chloroform	Powder	Brown	2.48	1.24
Petroleum Ether	Powder	Brown	1.92	0.86

Table 1: Properties and extractives values of *Hydnoraabyssinicia* extract root Preliminary phytochemical screening of extract from *Hydnoraabyssinicia*.

Secondary Metabolite	Test	Successive Method of Extraction			
		Methanol	Chloroform	Petroleun	
Alkaloids Acidic	Н	-	-	-	
	D	-	-	-	
	M	-	-	-	
	W	-	-	-	
	Н	+++	+++	+++	
Alkaloids Basic	D	++++	++++	++++	
	M	+++	+++	+++	
	W	+++	+++	+++	
	КОН	-	++	+++	
Flavonoids	NH ₄ OH	-	++	+++	
	ALCL3	-	++	+++	
	Mg	-	-	-	
Saponins	Foam test	+++	+++	+++	
Coumarine	KOH/UV	-	-	-	
Sterols &	Liebermann's	-	++	+++	
Triterpenes	Salkowski	-	++	+++	
Tannins	Ferric chloride test	-	-	+++	
	Gelatin test	-	-	+++	
Cardiac glyco- sides	Glacial acetic acid	+	+	+	
Anthraquinone	Chloroform with NH ₃ OH	-	-	-	

 Table 2: Result of phytochemical screening.

Key: Very high = (+++++), High = (++++), Moderate = (+++), Trace amount = (++) and absent = (-+).

Hydnoraabyssinicia roots extract contain high amount of alkaloids, high amount of tannins in methanol extract and moderate amount of flavonoids, and triterpenes, and trace amount of cardiac glycosides and high amount of saponins.

The extract of *Hydnoraabyssinicia* root at concentrations (100mg/ml, 50mg/ml, 25mg/ml, 12.5mg/ml), were subjected to antimicrobial tests by using cup plate agar diffusion method and inhibition zone were measured in (mm) against four bacterial strains and one fungi. The range of inhibition was found 11-25mm (Table 3).

Phytochemical screening of Hydnoraabyssinicia

The phytochemical screening were carried out on different extracts of *Hydnoraabyssinicia* roots extracts and they showed to contain high amount of alkaloids, high amount of tannins in methanol

extract, moderate amount of flavonoids, and triterpenes, trace amount of cardiac glycosides and high amount of saponins.

Extract	Concentration in mg/ml	Zone of inhibition in diameters (mm)				
		E.c	P.a	S.a	B.s	C.a
Methanol	100	19	-	20	25	19
	50	18	-	17	24	18
	25	17	-	14	23	16
	12.5	12	-	12	22	15
Chloroform	100	17	-	-	22	17
	50	16	-	-	20	14
	25	15	-	-	19	10
	12.5	11	-	-	18	10
Petroleum Ether	100	-	-	-	20	16
	50	-	-	-	19	15
	25	-	-	-	17	13
	12.5	-	-	-	15	10

Table 3: Result of antimicrobial activities

Key: *B.s.*, *Bacillus subtilis; S.a.*, *staphyllo coccus aureus; E.c.*, *Escherichia coli; P.a. pseudomonas aeruginosa; C.a. Candida albicans*; Concentration of extracts (100, 50, 25, 12.5mg/ml). Zone of inhibition in (mm), - no inhibition, <9mm inactive, 9-12mm partially active, 13-18mm active, >18mm very active. The methanol extract showed high inhibition zone against four tested microorganisms (E.c., S.a., B.s., and C.a).

Antimicrobial activities of Hydnoraabyssinicia

The methanol extract showed high activity at all concentrations (100,50,25,12.5) against bacillus subtilis (25,24,23,22),low activity against E.c (19,18,17,12) respectively as well as staphylococcus aureus (20,17,14,12), and low activity against candida albicans (19,18,16,15), Chloroform extract cited low activity against E.c (17,16,15,11), as well as candida albicans (17,14,10,10) and high activity against bacillus subtilis (22,20,19,18), Petroleum ether extract showed high activity against bacillus subtilis (20,19,17,15), show low activity against candida albicans (16,15,13,10). This activity is due to presence of phytoconstituents present in roots extracts mainly saponins and phenolic compounds which was confirmed by phytochemical tests. African medicinal plants are well tested for their antimicrobial activity this activity is due to phytochemical class such as saponin, flavonoid, tannins and phenolic compounds (16).

Conclusion

Antimicrobial resistance is reported to be on the increase due to gene mutation of the disease pathogens. *Hydnora abyssinicia* was chosen for this study because of their reputation in folklore medicine as antimicrobial agents and usage in many diseases, this agreed with [15]. Phytochemical screening was carried out and lead to presence of some secondary metabolites the plant was showed to contain alkaloids, flavonoids, tannins, saponins, sterol, triterpenes, and cardiac glycosides. The crude extract was subjected to antimicrobial assays using cup plate diffusion method and the inhibition zone was measured in mm. The methanol extract gave good result against four tested microorganisms (E.c, S.a, B.s, and C.a). The petroleum ether extract showed absence of inhibition zone against four bacterial strains, and show low activity against *candida albicans*.

References

- 1. Adam SEI (1978) Toxicity of indigenous plants and agricultural chemicals in farm animals. clinical toxicology 13: 269-280.
- Nwude N (1979) Poisonous Plants in Nigeria. Ahmadu Bello University Press, Zaria, Nigeria.
- Gamal ED, Mahgoob SEL, Awatif AB, Mohammed GM (1997) Medicinal plant of ingassana area, research institute for medicinal and aromatic plants. National Center for Research, Khartoum, Sudan.
- 4. Nethathe BB, Ndip RN (2011) Bioactivity of *Hydnoraafricana* on selected bacterial pathogens: Preliminary phytochemical screening. African Journal of Microbiology Research, 5: 2820-2826.
- El-Kamali HH, EL-Karim EMA (2009) Evaluation of antibacterial activity of some medicinal plants used in sudanese traditional medicine for treatment of wound infections. Academic Journal of Plant Sciences 2: 246-251.
- Elgazali BEG, Eltohami SM, El Egami BAA (1994) Medicinal plants of the Sudan: Medicinal plant of the white nile provinces. National Centre for Research, Medicinal & Aromatic Plants Research Institute. Telangana, India
- Williamsa VL, Falcãob MP, Wojtasik EM (2011) Hydnora abyssinica: Ethnobotanical evidence for its occurrence in southern Mozambique; South African Journal of Botany 77: 474-478.
- Wondergen P, Senah KA, Glover EK (1989) Herbal drugs in primary healthcare. Zimbabwe Science News.
- WHO (1998) Regulatory situation of herbal medicines: A worldwide review. World Health Organization, Geneva, Switzerland.
- Koko Waro JO (1976) Medicinal plants of East Africa. East African Literature Bureau. Bloomington, Indiana.
- Onyancha JM, Cherongis CN, Nzivo JM, Muriithi GI, Njuguna DG, et al. (2015) Phytochemical screening and evaluation of antioxidant activity of methanolic extract of Kenyan *Hydnoraabyssinica* a. Braun (Hydnoraceae). Journal of Innovations in Pharmaceuticals and Biological Sciences 2: 1-6.
- Gibbons S (2008) Phytochemicals for bacterial resistance-strengths, weaknesses and opportunities. Planta Med 74: 594-602.
- Joy Thomas J, Mathew S, Skaria BP (1998) Medicinal plants. Kerala Agricultural University, Kerala, India.
- Shelley BC (2009) Ethanobotany & the process of drug discovery: A laboratory exercise. The American Biology Teacher 71: 541-547.
- 15. Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA (2005) Screening of crude extracts of six medicinal plants used in South West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern Med 5:1.
- 16. Martinez A, Valencia G (2003) Marchafitoquimica. In: Manual de prácticas de Farmacognosia y Fitoquímica 2008, (1st edition). Universidad de Antioquia, Colombia, South America.
- 17. Kavanagh F (1972) Analytical microbiology. Academic Press, New York.

Journal of Anesthesia & Clinical Care

Journal of Addiction & Addictive Disorders

Advances in Microbiology Research

Advances in Industrial Biotechnology

Journal of Agronomy & Agricultural Science

Journal of AIDS Clinical Research & STDs

Journal of Alcoholism, Drug Abuse & Substance Dependence

Journal of Allergy Disorders & Therapy

Journal of Alternative, Complementary & Integrative Medicine

Journal of Alzheimer's & Neurodegenerative Diseases

Journal of Angiology & Vascular Surgery

Journal of Animal Research & Veterinary Science

Archives of Zoological Studies

Archives of Urology

Journal of Atmospheric & Earth-Sciences

Journal of Aquaculture & Fisheries

Journal of Biotech Research & Biochemistry

Journal of Brain & Neuroscience Research

Journal of Cancer Biology & Treatment

Journal of Cardiology: Study & Research

Journal of Cell Biology & Cell Metabolism

Journal of Clinical Dermatology & Therapy

Journal of Clinical Immunology & Immunotherapy

Journal of Clinical Studies & Medical Case Reports

Journal of Community Medicine & Public Health Care

Current Trends: Medical & Biological Engineering

Journal of Cytology & Tissue Biology

Journal of Dentistry: Oral Health & Cosmesis

Journal of Diabetes & Metabolic Disorders

Journal of Dairy Research & Technology

Journal of Emergency Medicine Trauma & Surgical Care

Journal of Environmental Science: Current Research

Journal of Food Science & Nutrition

Journal of Forensic, Legal & Investigative Sciences

Journal of Gastroenterology & Hepatology Research

Journal of Gerontology & Geriatric Medicine

Journal of Genetics & Genomic Sciences

Journal of Hematology, Blood Transfusion & Disorders

Journal of Human Endocrinology

Journal of Hospice & Palliative Medical Care

Journal of Internal Medicine & Primary Healthcare

Journal of Infectious & Non Infectious Diseases

Journal of Light & Laser: Current Trends

Journal of Modern Chemical Sciences

Journal of Medicine: Study & Research

Journal of Nanotechnology: Nanomedicine & Nanobiotechnology

Journal of Neonatology & Clinical Pediatrics

Journal of Nephrology & Renal Therapy

Journal of Non Invasive Vascular Investigation

Journal of Nuclear Medicine, Radiology & Radiation Therapy

Journal of Obesity & Weight Loss

Journal of Orthopedic Research & Physiotherapy

Journal of Otolaryngology, Head & Neck Surgery

Journal of Protein Research & Bioinformatics

Journal of Pathology Clinical & Medical Research

Journal of Pharmacology, Pharmaceutics & Pharmacovigilance

Journal of Physical Medicine, Rehabilitation & Disabilities

Journal of Plant Science: Current Research Journal of Psychiatry, Depression & Anxiety

Journal of Pulmonary Medicine & Respiratory Research

Journal of Practical & Professional Nursing

Journal of Reproductive Medicine, Gynaecology & Obstetrics

Journal of Stem Cells Research, Development & Therapy

Journal of Surgery: Current Trends & Innovations

Journal of Toxicology: Current Research

Journal of Translational Science and Research

Trends in Anatomy & Physiology

Journal of Vaccines Research & Vaccination

Journal of Virology & Antivirals

Archives of Surgery and Surgical Education

Sports Medicine and Injury Care Journal

International Journal of Case Reports and Therapeutic Studies

Journal of Ecology Research and Conservation Biology

Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php