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Introduction
	 The liver is the largest metabolically active exocrine gland of the 
body and produces bile that serves as the excretory route for endog-
enous and exogenous compounds. Bile also assists in digestion and 
absorption of fat by providing bile acids and phospholipids to the du-
odenum and plays an immunological role by delivering IgA to the 
intestine. The inability of the liver to produce bile is termed cholesta-
sis, which accompanies many liver diseases and can be caused by en-
dogenous as well as exogenous compounds. Agents that increase bile 
formation are known as choleretic agents, while agents that decrease 
bile formation are known as cholestatic agents. Bile formation is an 
energy-dependent process and requires vectorial transport of solutes 
from the sinusoidal space to the canaliculus. The coordinated function 
of transporters located at the sinusoidal and canalicular membranes 
results in the accumulation of solutes (primarily organic anions in-
cluding bile salts and glutathione) in the canalicular space providing 
the osmotic driving force for bile formation [1-7]. It is thus easy to 
appreciate the paradigm that cholestasis results when the ability of 
the liver to transport solutes into the canaliculus is compromised. In 
cholestatic liver diseases [2,8], compounds normally excreted in the 
bile accumulate, due to impairment of hepatic transport functions, 
in the liver and blood resulting in adverse effects. Our knowledge 
of mechanisms underlying bile formation and cholestasis has been 
steadily increasing. The aim of this review is to summarize our cur-
rent understanding of the role of p38 MAPK and its isoforms in bile 
formation and cholestasis.

Transporters in bile formation 

	 Several transporters are involved in hepatocellular transport of 
organic as well as inorganic solutes [5]. Three of these transport-
ers, namely Na+-Taurocholate Cotransporting Polypeptide (NTCP), 
Bile Salt Export Pump (BSEP) and Multidrug Resistance Protein 2 
(MRP2) are primarily involved in vectorial transport of organic an-
ions involved in bile formation. NTCP mediates Na+/TC cotransport 
across the sinusoidal membrane. BSEP and MRP2 are ATP-Binding 
Cassette (ABC) transporters, located at the canalicular membrane 
and mediate canalicular secretion of bile salts and conjugated organic 
anions, respectively [9-12]. The coordinated function of NTCP and 
BSEP allows transport of conjugated bile salts into the canalicu-
lar space providing the stimulus for that fraction of bile known as 
bile-dependent bile formation. It should be noted that while some bile 
salts (taurocholate, TC and tauroursodeoxycholate, TUDC) produce 
choleresis, others (taurolithocholate, TLC and taurodeoxycholate, 
TDC) are known to produce cholestasis [2,13]. The bile-acid inde-
pendent fraction of bile results from biliary excretion of other solutes 
including conjugated organic anions transported by MRP2 [14].  
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Abstract

	 This review summarizes our current understanding of the role of 
p38 MAPK in bile formation and more specifically in plasma mem-
brane localization of MRP2. Bile formation is an energy-dependent 
process and requires vectorial transport of solutes from the sinusoi-
dal space to the canaliculus. The coordinated function of transport-
ers located at the sinusoidal and canalicular membranes results in 
the accumulation of solutes in the canalicular space providing the 
osmotic driving force for bile formation. Transport of organic anions 
by sinusoidal Na+-Taurocholate Cotransporting Polypeptide (NTCP) 
and canalicular Bile Salt Export Pump (BSEP) and Multidrug Re-
sistance Protein 2 (MRP2) are primarily involved in bile formation. 
Cholestasis results when the ability of the liver to transport solutes 
into the canaliculus is compromised. These transporters under-
go transcriptional and post-translational regulation. Transcriptional 
regulations are delayed effects of cholestasis that assure long term 
adjustments of transporter functions. On the other hand, post-trans-
lational regulations involve short-term rapid changes in Plasma 
Membrane (PM) localization of transporters permitting rapid chang-
es in bile formation. P38 MAPK is one of the signaling pathways 
implicated in the regulation of PM localizations of BSEP and MRP2. 
Interestingly, p38 MAPK is involved in the insertion into as well as 
the retrieval of MRP2 from PM. A recent study provides evidence 
that the insertion into PM and the retrieval from PM of MRP2 are 
facilitated by p38α and p38β MAPKs, respectively. These p38MAPK 

isoforms are likely to be in turn regulated by various PKCs. The ef-
fect of p38 MAPK isoforms in bile formation and cholestasis should 
be taken into consideration when developing p38 MAPK inhibitors 
for inflammatory diseases to avoid liver toxicity.
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Transporter regulation: It is now well established that apart from 
genetic defects [15-18], regulation of these transporters at the level 
of transcriptional, translational and post-translational modifications 
may be altered by chemicals/disease processes. Indeed, cholesta-
sis is associated with down-regulation of NTCP and MRP2 [19,20] 
with a relatively preserved expression of BSEP [19]. It is becoming 
evident that transcriptional regulation of hepatocellular transporters 
is primarily mediated via the nuclear receptor superfamily [3,21], 
while the post-translational regulation is mediated via classical sec-
ond messengers. The transcriptional changes are delayed effects of 
cholestasis that assure long term adjustments of transporter functions. 
On the other hand, post-translational regulations involve short-term 
rapid changes in Plasma Membrane (PM) localization of transporters 
[1,5,6] and these permit rapid changes in bile formation. This review 
focusses on short-term regulations. The long term transcriptional reg-
ulations have recently been reviewed by others [3,21].

Short-term regulation: A transporter must be translocated to the 
appropriate membrane for it to transport its solute across that mem-
brane. This is a complex regulated process requiring participations of 
various signaling molecules along with vesicles and cytoskeletons. A 
breakdown in this regulated process can lead to a decreased amount 
or an absence of a transport protein at its intended site resulting in de-
creased or no transport function and hence cholestasis. It is becoming 
evident that a translocation defect is an important event in cholestasis. 
Thus, experimental cholestasis induced by bile duct ligation, endo-
toxin, TLC and Estradiol-17beta-D-glucuronide (E-17G) is associat-
ed with decreased level of NTCP [22], MRP2 [20] and BSEP [23,24] 
in the plasma membrane. Certain other agents (cAMP, TC, TUDC) 
have been shown to stimulate translocation of these transporters to the 
membrane [12,25-29]. Acute cholestasis induced by TLC and E-17G 
is associated with the retrieval of BSEP and MRP2 from the canalic-
ular membrane and these effects are reversed by cAMP [23,24,30]. 
TUDC has been shown to reverse TLC-induced retrieval of MRP2 
[27,31]. These results highlight the importance of translocation defect 
in acute cholestasis. Thus, an understanding of the cellular mecha-
nisms regulating transporter translocation and retrieval is necessary 
for medical management of patients with cholestasis.

	 A number of signaling pathways including Protein Kinase Cs 
(PKCs), p38 Mitogen Activated Protein Kinases (p38MAPKs), Rab 
proteins, Protein Phosphatases (PPs), actin binding proteins, Ca2+ and 
Phosphoinosotide-3-Kinases (PI3Ks), [1,5,6,32,33] have been im-
plicated in the regulation of PM localization of transporters (NTCP, 
BSEP and MRP2) by cAMP, TUDC, E17G and TLC [1,5,34,35]. In 
this review, we discuss the regulation by p38 MAPK as the role of p38 
MAPK has not recently been reviewed.

P38 MAPK

	 Mammalian cells have four major types of MAPKs cascade and 
these include ERK1/2, JNKs, p38 MAPK and ERK5 cascades [36-40] 
(Figure 1).

	 Each of these cascades consists of a core module of three tiers 
of protein kinases termed MAPK, MAP2K, and MAP3K. There are 
seven MAP2Ks (also known as MEK, MAP/ERK kinase, or MKK) 
that differentially activate different MAPKs by dual phosphorylation 
on Thr and Tyr. Thus, ERK1/2 is activated by MKK1/2, p38 MAPKs 
are activated by MKK3, MKK4, and MKK6, JNKs by MKK4/7 
and ERK5 by MKK5. The MAPKs regulate members of a family of 
protein Ser/Thr kinases termed MAPK-Activated Protein Kinases 
(MAPKAPKs). The MAPKAPKs are related enzymes that respond 
to extracellular stimulation through direct MAPK-dependent activa-
tion loop phosphorylation and kinase activation [42]. The deactiva-
tion of MAPKs is achieved through dephosphorylation catalyzed by 
MAPK-specific Phosphatases (MKPs) including dual specific MAPK 
phosphatases [43,44]. MAPKs mediate/regulate diverse cellular func-
tions including embryogenesis, apoptosis, immunity, proliferation, 
and differentiation by integrating signals from intra- and extracellular 
stimuli [41,45-47]. The p38 MAP kinase pathway shares many sim-
ilarities with the other MAP kinase cascades, being associated with 
inflammation, cell growth, cell differentiation and cell death [48,49].

Activation stimuli: p38 MAPK is also known as Stress-Activated 
Protein Kinase (SAPK) since it is mostly activated by stresses such  

Figure 1: MAPK signaling cascades consist of a core of three sequentially 
activated protein kinases and these include MAPK kinase kinase (MAP3K), 
MAPK kinase (MAP2K) and MAPK [37-39,41]. In addition, there is 
an upstream MAPK kinase kinase (MAP4K) and a downstream MAPK 
activated protein kinase (MAPKAPK, not shown) in certain cells and for 
certain stimulations, but they are not always necessary for signaling through 
the cascades. Each cascade is initiated following extracellular stimulus. The 
extracellular stimuli include growth factors, mitogen, G-Protein Coupled 
Receptor (GPCR) agonist, stress and inflammatory cytokines. Activation 
of MAP4K typically involves phosphorylation by protein kinases activated 
by interaction of an agonist with its cell surface receptor. MAP3K, which 
is phosphorylated and activated by MAP4K, directly phosphorylates and 
activates MAP2K (also known as MKK or MEK). Activation of MAPK is 
then accomplished by dual phosphorylation of a conserved tripeptide (Thr-
X-Tyr) motif in the conserved segment by MAP2K. MAP kinases include 
Extracellular signal-Regulated Kinase (ERK1/2), c-Jun amino-terminal 
Kinases (JNK1/2/3), p38 MAPK and ERK5. Activation of each MAPK 
leads to a diverse array of biological response.
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as ER stress, oxidative stress, metabolic stress and DNA damage, and 
by inflammatory cytokines [42,50-54]. The activation of p38 MAPK 
by a variety of stimuli (Figure 1) involves dual phosphorylation on 
Thr180 and Tyr182 by upstream MAPK kinases. While three up-
stream MAPK Kinases (MKKs), namely MKK3, MKK6 and MKK4, 
control the activation of p38 MAPK, MKK3 and MKK6 are consid-
ered the major activators of p38 MAPK [55-58]. A MAPKK-inde-
pendent mechanism of p38 activation involves TAB1 (Transforming 
growth factor-beta-Activated protein Kinase 1 (TAK1)-binding pro-
tein 1) [59]. Interacting of TAB1 with p38 MAPK induces p38 auto-
phosphorylation [60]. Inactivation of p38 MAPK involves dephos-
phorylation by phosphatases targeting threonine and tyrosine residues 
in the activation loop [61]. Phosphatases involved are Protein Phos-
phatase (PP) 2A add PP2C or Striatal Enriched Tyrosine Phosphatase 
(STEP) and Haemopoietic Tyrosine Phosphatase (HePTP) [49]. Inhi-
bition of PP2A increases p38 activity by various stimuli [62-64]. In 
addition, microRNAs contribute to the homeostatic signaling of p38 
MAPK pathway [40]. 

P38 MAPK isoforms: There are four known isoforms (α, β, γ and 
δ) of p38 MAPK with 60% homology and only α and β isoforms 
are expressed in livers [49,65,66]. Whereas p38α is ubiquitously ex-
pressed, p38β is mostly found in the brain, p38γ is predominantly 
expressed in skeletal muscle and p38δ gene expression is found in the 
lung, kidney, testis, pancreas and small intestine [49,67]. Activation 
of isoforms by upstream kinases differs based on stimuli and cell type 
[49,68,69]. In general, MKK6 can phosphorylate all four p38 MAPK 
family members, where as MKK3 activates p38α, p38γ and p38δ, but 
not p38β. In non-hepatic cells, MKK6 preferentially activates p38β 
MAPK [70] and MKK3 activates only p38α and p38γ MAPKs [71]. 
Thus, MKK3 is expected to activate p38α and not p38β MAPK in 
the liver. In addition, p38α can also be phosphorylated by MKK4. 
Cyclic AMP has been shown to specifically activate p38α, but not 
p38β in adipocytes [72]. Selective activation of p38 isoforms has been 
reported in other cells [47,73,74]. Studies also suggest isoform spe-
cific effects of p38 MAPK. For example, p38α MAPK is involved in 
inflammation induced by proinflammatory cytokines, IL-1 and TNFα 
[75].  P38α and β MAPK have been shown to mediate cell cycle [67]. 
P38α but not p38β MAPK regulates chronic pain development [76]. 
P38α promotes apoptosis and p38β inhibits apoptosis [77,78].  P38δ 
synergistically regulates ERK pathway, whereas p38α medicates nu-
clear factor kappa B (NFкB) pathway for drug resistance [79].

Hepatic effects of p38 MAPK: Many hepatic functions are affect-
ed by p38MAPK. These functions include regulation of proliferation 
[80], protection against hypoxic injury [81], gluconeogenesis [82], en-
hancement hepatic ketogenesis [83], improvement of hepatic steatosis 
[84], inhibition on the progression of liver fibrosis [85], involvement 
in the pathogenesis and progression of intrahepatic cholestasis of 
pregnancy [86], bile acid synthesis [87] and anti-apoptotic effect of 
TUDC [88], bile acid-induced apoptosis [89,90], and biliary excretion 
of bile acids [91]. The p38 MAPK also regulates transporter translo-
cation. For example, p38 MAPK is involved in GLUT4 translocation 
[92], EGF receptor endocytosis [93] and serotonin transporter traf-
ficking [94]. In the liver, the p38 MAPK pathway is involved in the 
PM translocation/retrieval of MRP2 and BSEP [95,96]. Note that PM 
translocation of NTCP is not regulated by p38 MAPK [97,98]. Thus, 
the regulation of PM translocation/retrieval of MRP2 and BSEP by 
p38 MAPK in hepatocytes is discussed below.

Hepatocellular Transporter Translocation and P38 
MAPK
	 Both choleretic (cAMP, TUDC, TC) and cholestatic agents (TLC, 
TDC and E17-G) have been employed to determine the cellular mech-
anisms regulating PM localization of BSEP and MRP2. These stud-
ies suggest a role for p38 MAPK in PM insertion/retrieval of BSEP 
and MRP2. TUDC-induced increases in bile acid secretion and BSEP 
translocation to the canalicular membrane require PI3K-independent 
activation of p38 MAPK [91,96]. Translocation of MRP2 to PM by 
cAMP is also mediated by p38 MAPK [99]. E-17G-induced endo-
cytosis of BSEP and MRP2 is associated with decreased bile flow 
and biliary excretion of BSEP/MRP2 substrates and p38 inhibition 
prevents the internalization of BSEP/MRP2 [95]. P38 MAPK plays a 
role in oxidative stress-induced retrieval of BSEP and MRP2 [100]. 
TLC activates p38 MAPK [101] and decreases PM localization of 
MRP2 in hepatocytes [27,102]. These results suggest that p38 MAPK 
is involved in the insertion of BSEP/MRP2 to PM by choleretic 
agents as well as the retrieval of BSEP/MRP2 from PM by cholestatic 
agents. These paradoxical effects of p38 MAPK on retrieval as well as 
insertion of BSEP/MRP2 to PM led to the hypothesis that the effects 
of p38 MAPK on insertion and retrieval of these transporters may 
be mediated via different p38 MAPK isoforms. This hypothesis is 
based on findings that p38α MAPK and p38β MAPK have reciprocal 
effects on the expression of inducible nitric oxide synthase in renal 
mesangial cells [103].

	 There are limited studies on the role of p38 MAPK isoforms in 
the retrieval/insertion of hepatic transporters. One study showed that 
cAMP selectively activates p38α via activation of MKK3 and knock-
down of p38α MAPK inhibited cAMP-induced insertion of MRP2 in 
a hepatic cell line [99]. These results were confirmed in studies with 
hepatocytes from MKK3 knockout mice [104]. In contrast to cAMP, 
TLC did not activate MKK3 or p38α MAPK in wild type mice hepato-
cytes and still decreased PM-MRP2 in MKK3 knockout hepatocytes. 
Additionally, TLC activated MKK6 in MKK3 knockout hepatocytes, 
and knockdown of p38β MAPK abrogated TLC-mediated decreases 
in PM-MRP2 in a hepatic cell line [104]. Taken together, these re-
sults suggest that activation of the MKK3/p38α MAPK pathway fa-
cilitates plasma membrane insertion of MRP2, whereas activation of 
the MKK6/p38β MAPK pathway mediates retrieval of PM-MRP2 by 
TLC (Figure 2). Whether insertion/retrieval of BSEP is also similarly 
regulated by P38 MAPK isoforms remains to be established.

Crosstalk between P38 MAPK and PKC Signaling 
Pathways
	 Cellular mechanisms by which activation of p38 MAPK leads 
to alteration of PM localization of MRP2 may involve interactions 
with other signaling pathways. There are studies suggesting that 
Protein Kinase C (PKC) isoform also differentially regulate PM lo-
calization of BSEP and MRP2. PKC comprises a family of at least 
12 isoforms [105], which include conventional (cPKCα, β, βI, βII 
and γ), novel (nPKCδ, ε, η and θ), atypical (aPKCζ and λ) isoforms 
and PKCµ. cPKCα, nPKCδ, nPKCε, aPKCζ and probably cPKCβII 
are present in hepatocytes [106-108]. For example, cPKCα medi-
ates MRP2 and BSEP retrieval by E17G [109] and PMA [110], nP-
KCδ mediates cAMP-induced translocation of MRP2 to the plasma 
membrane [111], and nPKCε is responsible for the internalization of 
MRP2 by TLC [102]. Since PKCs activate p38MAPK in hepatocytes 
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[95,112-114], it is likely that PKCs act upstream of p38 MAPK in 
hepatocytes (the regulation of PM localization of BSEP and MRP2). 
Indeed, results of several studies are consistent with this hypothesis. 
For example, hypoxia induced activation of p38 MAPK is blocked 
by PKC inhibitors in chicken hepatocytes [112]. Activation of p38 
MAPK by PKCδ and PKCε has been reported in ischemic precondi-
tioning in rat hepatocytes [115]. nPKCδ has been suggested to initiate 
p38 MAPK activation in butyrate-induced apoptosis in human colon 
adenoma cells [116]. One study suggests that cPKCs act upstream of 
p38 MAPK in E17G-induced retrieval of PM-BSEP and PM-MRP2 
[95]. These studies raise the possibility that different PKCs may ac-
tivate different p38MAPKs and this may explain isoform-specific 
effects of PKCs and p38MAPK on PM-MRP2. More specifically, ac-
tivation of p38α MAPK by nPKCδ may facilitate MRP2 translocation 
to PM and activation of p38β MAPK by cPKCα and/or nPKCε may 
promote retrieval from PM (Figure 2). A preliminary study (unpub-
lished) by authors showing that cAMP fails to activate p38α MAPK in 
PKCδ knockout hepatocytes is consistent with this hypothesis. How-
ever, further studies will be required to define whether PM-MRP2 
localization involves isoform-specific effects of PKCs on p38α and 
p38β MAPKs in hepatocytes.

Liver Functions, Inflammatory Diseases and P38 
MAPK
	 The possibility of p38 MAPK as the therapeutic target for Rheu-
matoid Arthritis (RA) was raised with the finding in 1994 that a p38 
inhibitor blocked Lipopolysaccharide (LPS)-induced TNFα and IL1β 
production by monocytes [75]. P38 MAPK inhibitor appeared to be 
a potential “wonder drug” and work began in earnest to synthesize 
and clinically evaluate novel inhibitors for inflammatory diseases 
[117-119]. These compounds were mainly competitive antagonists 
that blocked ATP binding to the kinase [120]. AP-1-dependent gene 
expression is p38 isoform specific in human breast cancer cells [121].  

However, potency, lack of selectivity and toxicity limited their util-
ity [122]. These compounds inhibited p38α and β but not the γ or 
δ isoforms [123]; at higher concentrations many other kinases were 
blocked [124]. While effective in preclinical models, a variety of tox-
icity problems, especially affecting the liver, interfered with clinical 
development [117]. Clinical trials with certain p38 MAPK inhibitors 
were discontinued because of liver toxicity [117,125], which is likely 
to be due to the inhibition of p38α MAPK. This is consistent with 
studies suggesting that deficiency of p38α in the liver increases the 
expression of chemokines to recruit more inflammatory cells [126], 
facilitates N-Nitrosodiethylamine (DEN) - induced hepatocellular 
carcinoma and increased proliferation [127,128]. In addition, p38α 
MAPK facilitates bile formation by translocating MRP2 to the PM. 
Recent studies suggest that MKK6 is a potential therapeutic target in 
RA [120,129]. Since MKK6 activates p38β but not p38α MAPK in 
hepatocytes and p38β MAPK induces cholestasis by retrieving MRP2 
from the PM, MKK6 inhibitors may be less toxic to the liver. A bet-
ter understanding of underlying signaling pathways of p38 MAPK 
should allow us to develop the drug target limiting hepatic toxicity 
and thereby improving the efficacy of p38 MAPK inhibitors in in-
flammatory diseases.

	 In summary, our understanding of cellular mechanisms underly-
ing bile formation and cholestasis is steadily increasing. Recent stud-
ies suggest that p38α MAPK facilitates bile formation by inserting 
MRP2 into PM, while p38β MAPK mediates cholestasis by retrieving 
MRP2 from the PM. It appears that isoform specific effects of PKCs 
may be mediated via p38 MAPK isoforms. Since p38 MAPK is also 
involved in inflammation, development of drugs for inflammatory 
diseases by inhibiting p38 MAPK should take into account the effect 
of p38 MAPK isoforms in bile formation and cholestasis. 
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