
 As aging occurs, the maintenance of the genome slowly decreases 
in efficiency [1]. Since the mechanisms of aging are elusive, studies on 
premature aging diseases provide good models to unveil the mysteries  
of aging. Cockayne Syndrome/CS (mutation in Csa or Csb),  
Xeroderma pigmentosum group A (mutation in Xpa), and  
Ataxia-telangiectasia mutated (mutation in Atm) are segmental  
premature aging disorders [1]. Each protein is vital in either Double 
Strand Break repair (DSB), like ATM, or Nucleotide Excision Repair 
(NER) in CSA, CSB and XPA. Loss of these proteins cause failures in 
DNA repair and lead to early aging perhaps due to the accumulation 
of DNA damage [2-4]. The consequences of genomic instability are 
neurological and developmental issues as well as increased cancer risk 
among individuals (except in CS) [5].

 Among these human premature aging disorders, there is a strong 
correlation between their phenotypes and mitochondrial health [6]. 
An imbalance of mitochondrial quality maintenance is associated 
with mitochondrial diseases and aging. The mitochondrial quality 
can be maintained by mitochondrial autophagy (termed mitophagy) a  
cellular process of cleaving damaged mitochondria, and likely  
facilitates healthy aging [7]. Commonly shared phenotypes between 
the three diseases are hypersensitivity to exogenous DNA damage  
inducers (UV light for CS and XP while AT is sensitive to ionizing 
radiation), shortened lifespan, neurological and cognitive dysfunction 
such as sensory-neural hearing loss and retinal degeneration [5,8].
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 Defective mitophagy seems to contribute to the etiology of  
mitochondrial dysfunction in these DNA repair deficient-premature  
aging diseases [2-4]. With the elevated amount of DNA damage, 
the protein poly [ADP-ribose] polymerase 1 (PARP1) signals the  
accumulation of DNA repair proteins to repair DNA damage [9]. 
PARP1 uses large amounts of NAD+ which is essential in both 
PARP1’s activity as well as in SIRT1’s activity [9]. SIRT1 is an enzyme  
that is linked to longevity and is involved in the regulation of  
Uncoupling Proteins (UCPs) that help regulate the mitochondrial  
membrane potential [9]. Since ATM, CSB and XPA all have  
phenotypic characteristics of mitochondrial diseases, we supported 
that the loss of these DNA repair proteins is associated with increased 
mitochondrial membrane potential, due to a loss of SIRT1 activity, 
resulting in cleavage of PINK1, a key kinase that regulates mitophagy 
[9]. PINK1 dysfunction causes defective mitophagy, which promotes 
altered mitochondrial phenotypes in ATM-, CSB-or XPA-deficient 
cell lines.

 Restoration of autophagy/mitophagy is a promising strategy for 
healthy aging. A possible intervention is targeting the PARP1 and 
SIRT1 pathways, both of which need NAD+ [10]. It is possible to  
inhibit PARP1 activity to decrease NAD+ utilization allowing more bio 
available NAD+ for SIRT1, but this may increase genomic instability  
due to PARP1’s important role in DNA damage signaling [10].  
Nicotinamide Riboside (NR) and Nicotinamide Mononucleotide  
(NMR) are NAD+ precursors which help restore some SIRT1  
activity [10]. Increased SIRT1 activity likely contributes to increased  
longevity in individuals with mitochondrial phenotypes by  
maintaining mitochondrial health through mitophagy. An increase 
in healthy mitochondria is beneficial as it should lead to a decrease 
in ROS production, and decrease unnecessary cell apoptosis [1].  
Collectively, these DNA repair deficiency-associated premature aging 
diseases have mitochondrial dysfunction, and further mechanistic  
studies of the cause and consequences of these mitochondrial  
phenotypes as well as the contribution of the mitochondrial  
dysfunction in the disease progression are of importance.
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