Correlations between Aging, Oxidative Stress, Micronutrient Deficiencies, Pollutant Metal-Toxicity and Increased Serum Gamma-Glutamyl Transferase (GGT) among Chronic myeloid Leukemia Congolese

Mireille Solange Nganga Nkanga1, Cécile Roth Laure Miakassisa Mapapa3, Paul Roger Beia Kazadi4, Antoine Lufimbo Katawandja5, Jacques Bikaula Ngwidiwo1, Thomas Solo Kuanda2, Alain Nganga Nzonzila6 and Benjamin Longo-Mbenza*7

1University in Kinshasa, Democratic Republic of the Congo
2Faculty of Health Sciences, Walter Sisulu University, South Africa
3Department of Pediatrics, Brazzaville University Hospital, Republic of Congo
4OVD Hospital Center, Democratic Republic of the Congo
5Kinshasa Regional Center for Nuclear Studies, University of Kinshasa, Democratic Republic of the Congo
6Saint Joseph Hospital, Kinshasa, Democratic Republic of the Congo
7*Corresponding author: Benjamin Longo-Mbenza, Faculty of Health Sciences, Walter Sisulu University, South Africa, Tel: +27 738899741 / +243 814396257; E-mail: longombenza@gmail.com

Received: September 26, 2019; Accepted: October 31, 2019; Published: November 08, 2019

Copyright: © 2019 Nkanga MSN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Hematologic Malignancy (HM) including Chronic Myeloid Leukemia (CML) is well established as a leading cause of morbidity and mortality worldwide in general [1-3] and developing countries such as sub-Saharan African environment.

However, there is no understanding on hematologic malignancy from Central African clinics in Democratic Republic of Congo (DRC). The objective of this study was to determine the level independent association between aging, oxidative stress, micronutrient deficiencies, pollutant metal-toxicity and increased serum GGT among CML Congolese.

Methods: The present study was designed as a retrospective analysis for adult patients aged ≥ 20 years with anemia classified into confirmed cytologic aspects such as normal myelogram and CML between 2009 and 2015 at KUC, Department of chemical pathology.

Results: In total, 38 Black Bantu CML were examined with 16 men vs. 22 women: sex ratio 1 Man: 1 Woman, and mean age of 53.5 ± 20.6 years. After adjusted for confounding factors (transfusion number, plasmocytes, blast and lymphocytes, serum manganese, iodine, copper, arsenic, bromium, molybdenum, albumin, uric acid) using multiple linear regression model, only increase in age (oxidative stress), and metal toxicity related to cadmium and nickel were significant and independently and positively correlate with increase in serum GGT, whereas antioxidant capacity loss defined by decrease in serum iodine, selenium, and indirect bilirubin, was significantly and independently correlated with increase.

Conclusion: The present findings support a significant role of aging, and persistent imbalance between exaggerated prooxidant metal toxicity-urban pollution and loss of antioxidant ability to repair cellular damage in Bantu adults CML in Kinshasa. Serum GGT might be considered as a cheap proxy of expensive and unavailable, early, precise and efficient pathological-cytogenetical tools for diagnose treatment of CML from poor Kinshasa megacity DRC.

Keywords: Aging; Chronic myeloid leukemia; Gamma glutamyl transferase; Oxidative stress

Introduction

Hematologic Malignancy (HM) including Chronic Myeloid Leukemia (CML) is well established as a leading cause of morbidity and mortality worldwide in general [1-3] and developing countries such as sub-Saharan African environment [3-5].

In the literature and in Central Africa including Rwanda and our Congolese experience the management of CML is feasible despite it challenging early and precise diagnose as well as the threat of epidemiologic-demographic-nutrition transitions [6-12]. Furthermore, oxidative damage and cell signaling transduction and treatment in general and in CML in particular [13,14].

Epidemiological studies supports a fundamental role of Gamma-Glutamyl Transferase (GGT/γ-GT) in oxidative stress conditions [15,16], metabolic syndrome, alcohol addiction, chronic liver disease and tuberculosis drug toxicity, and as well as cancers such as lymphoid and hematopoietic cancers [11-16]. Indeed, GGT is a strong enzyme at catalyzing the transfer of gamma-glutamyl functional group from molecules such as glutathione to an acceptor that may be an amino acid, a peptide or water (forming glutamate) [17]. GGT thus play an important key in the gamma-glutamyl cycle for the synthesis and the degradation of glutathione, drug, and xenobiotic detoxication [18]. Free radicals, metals, and antioxidant in oxidative stress are well known to induce cancer [19]. Aging is a real oxidative stress
conditions and is also a risk factor of cancers in general and HM in particular [20].

Different metals such as iron, copper, lead, mercury, chromium, cobalt, cadmium, arsenic and nickel generate structural, chemical, and biochemical of free radical (oxidative stress, cancer and DNA mutation) [21-24]. Although evidence of high level of lead, chromium, cobalt, copper, nickel, cadmium reported in breast milk in mother and children from Kinshasa, Democratic Republic of Congo (DRC) and among pre eclamptic women from Kinshasa, DRC there is data about variations of serum GGT in Kinshasa DRC patients with CML [25,26]. Moreover, there is insufficient and inaccurate diagnosis as well as other information of incident CML from African literature in general and from DRC in particular [27-29]. Therefore, the aim of this study was to determine the level independent association between aging, oxidative stress, micronutrient deficiencies, pollutant meta-toxicity, and increased serum GGT among CML Congolese.

Materials and Methods

The present study was designed as a retrospective analysis for CML adult patients aged ≥ 20 years well clinically, pathologically, cytogenetically, digitally and according to discriminative analysis in different previous scientific articles (publications mireille) classified into confirmed cytologic aspects such as normal myelogram and CML between 2009 and 2015 at KUC, Department of chemical pathology.

The variables of interest were gender, age, transfusion number, serum manganese, iron, copper, arsenic, selenium, bromium, molybdenum, cadmium, iodine, albumin, indirect bilirubin, uric acid, plasmocytes, blast, lymphocytes, colonial provinces, and HM form Albumin, total bilirubin, direct bilirubin, uric acid, γGT were performed at Lomo Medical using Photometer DNT-410 DIALAB, Wiener Neudorf, Austria 2012 by the enzymatic method.

Toxicology data (chromium, bromium, copper, mercury, lead, manganese, selenium, iron, zinc, nickel, arsenic, molybdenum, cadmium) were proceeded and analyzed at Research Center of Nuclear Energy of Kinshasa (CRENK) using the X-ray Fluorescence Spectrometer, Dispersive Energy, trademark AMETEK XEPOS, Model XEPOS III n with Mini PX Anode RX Generator CML, was define using WHO criteria for hematologic cancers (2008) Oxidative stress was specifically defined in Congolese patients including serum uric acid or decrease in levels of serum albumin indirect bilirubin (migration), selenium and iodine [4,19,30-32]. Metal toxicity was defined by increasing serum iron, manganese, copper, arsenic, bromium, molybdenum, cadmium, bromium [30]. The declines in concentrations serum iodine, selenium was also characterized for micronutrients deficiencies [30,32].

Statistical analysis

Descriptive statistics was used for count (frequency = n) and proportions (%) for gender whereas means ± Standard Deviation (SD) to describe continuous variables of interest. Bivariate analysis was used to calculate correlation simple Pearson’s r-coefficient between serum GGT and the rest of continuous variables. In multivariate linear multiple regression model, variations (R2) adjusted for potential confounding factors was obtained for independent association between serum GGT as a dependent variable and most important and significant independent determinant. Thus, unstandardized coefficients (B and Standard Error), standardized coefficients (Beta and 95% confident of interval/ CI), regression standardized Residual, observed cumulative (Com Prob), studentized deleted (Press) residual, and partial regression plot for each significant independent variable, were presented. The value of P < 0.05 was considered for significant difference. Statistical Package of Social Science (SPSS) version 23.0 for Windows (IBM/SPSS Inc., New York, USA) was used. Tables and figures were for messages as well as Box Plots for the variability of GGT.

Results

In total, 38 Black Bantu CML were examined with 16 men vs. 22 women: sex ratio (sex ratio 1 Man: 1 Woman, and mean age of 53.5 ± 20.6 years. Table 1 Summarized mean values of correlate and significant bivariate correlations between variables of interest among all CML patients. Indeed, there was significant POSITIVE bivariate association between aging, transfusion number and positive serum manganese, iron, nickel, copper, bromium, molybdenum, cadmium, uric acid, plasmocytes, lymphocytes, arsenic and serum GGT. However, there was a significant negative correlation between serum selenium, iodine, albumin, serum indirect bilirubin, blast and serum GGT.

<table>
<thead>
<tr>
<th>Correlates</th>
<th>Mean ± SD</th>
<th>GGT/r coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum GGT UI/L</td>
<td>43.0 ± 255</td>
<td>0.852</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Transfusion number</td>
<td>2.106 ± 1.7027</td>
<td>0.24</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Hemoglobin g/dL</td>
<td>8.9465 ± 1.7027</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Serum manganese mg/L</td>
<td>2.0181 ± 1.3511</td>
<td>0.483</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum iron mg/L</td>
<td>6.1858 ± 1.8504</td>
<td>0.22</td>
<td>0.019</td>
</tr>
<tr>
<td>Serum nickel mg/L</td>
<td>3.8491 ± 1.47044</td>
<td>0.698</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum copper mg/L</td>
<td>3.8374 ± 0.81288</td>
<td>0.236</td>
<td>0.012</td>
</tr>
<tr>
<td>Serum selenium mg/L</td>
<td>0.3447 ± 0.11918</td>
<td>-0.392</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum bromium mg/L</td>
<td>4.489 ± 2.30424</td>
<td>0.211</td>
<td>0.027</td>
</tr>
<tr>
<td>Serum molybdenum mg/L</td>
<td>3.1907 ± 1.45658</td>
<td>0.229</td>
<td>0.014</td>
</tr>
<tr>
<td>Serum cadmium mg/L</td>
<td>3.7301 ± 1.14797</td>
<td>0.612</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum iodine mg/L</td>
<td>0.6076 ± 0.43211</td>
<td>-0.297</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Serum albumin g/dL</td>
<td>3.1734 ± 1.25420</td>
<td>-0.479</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum indirect bilirubin mg/dL</td>
<td>0.4305 ± 0.44928</td>
<td>-0.359</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum uric acid mg/dL</td>
<td>9.5942 ± 3.80366</td>
<td>0.492</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Plasmocytes %</td>
<td>12.0566 ± 20.37370</td>
<td>0.529</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Blasts</td>
<td>18.6425 ± 33.38501</td>
<td>-0.253</td>
<td>0.007</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>39.3628 ± 23.35864</td>
<td>0.411</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Serum arsenic mg/L</td>
<td>0.1037 ± 0.18047</td>
<td>0.45</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Table 1: Mean value of correlates and bivariate correlations between of interest among all CML patients.

After adjusted for confounding factors (transfusion number, plasmocytes, blast and lymphocytes, serum manganese, iodine, copper, arsenic, bromium, molybdenum, albumin, uric acid using multiple linear regression model, only increase in age (oxidative stress), and metal toxicity related to cadmium and nickel were significant and independently and positively correlate with increase in serum GGT, whereas antioxidant capacity loss defined by decrease in serum iodine, selenium, and indirect bilirubin, was significantly and independently correlated with increase in GGT (Table 2). Indeed the variation of serum GGT adjusted was R2 = 80.1%. This multivariate linear regression excluded clinical, protein energy nutrition (albuminemia)
hematological heavy metal parameters, unable to explain independent variations of serum GGT in all adult CML. However, exaggerated prooxidant markers such as aging, increasing of both cadmium and nickel explained independently increasing concentration of serum GGT. Whereas loss of antioxidant properties in terms of important decline in serum iodine, selenium and indirect bilirubin were significantly and independently associated with increased concentration of serum GGT in those adult CML.

Discussion

The present study characterized Black Bantu CML patients according to demographics (gender and age), treatment (transfusions number), hematologic profile (plasmocytes, blast, lymphocyte), cytogenetical profile (Philadelphia chromosome) oxidative stress markers (serum albumin, uric acid, indirect bilirubin, iodine, selenium), and metal toxicity (serum cadmium, molybdenum, bromium, arsenic, copper, manganese). The levels of serum GGT were compared according to CML, while univariate (bivariate) correlates and independent determinants of variations of serum GGT were identified in these CML patients.

This study did not reveal any sex predominance among CML cases. Sex did not influence the concentration of GGT. In general, these Black Bantu CML patients were young old adult, whereas CML patients in developed countries are elderly [23,33]. Markedly elevated serum GGT in CML patients, might be considered as the most sensitive and prognostic marker of hematologic cell proliferation and oncogenesis among these Black Bantu Congolese patients. Furthermore, there was a significant positive correlation between plasmocytes, blasts, lymphocytes and increasing level of serum GGT in this study.

In this study, oxidative stress was demonstrated by imbalance between the production of prooxidant (reactive oxygen species) and the decline of antioxidant properties in leukemia cancers in general and in CML in particular [18,19,22,34,35]. The present adult CML are often exposed to megacity Kinshasa pollution with metal toxicity underlying oxidative stress [11,30].

Both bivariate (univariate) and multivariate analysis confirmed that serum GGT augmentation is the marker of oxidative stress induced by aging, micronutrient deficiencies, and pollutant metal-toxicity [23,30]. Indeed, there was univariate and highly significant association between age, serum manganese, iron, nickel, copper, arsenic, selenium, bromium, molybdenum, cadmium, iodine, albumin, indirect bilirubin, uric acid and increased serum GGT. However, only six independent variables such as aging, metal toxicity (serum cadmium and serum nickel), and loss of antioxidant capacities of serum selenium, iodine, and indirect bilirubin were identified as the most important independent and significant determinants of increasing in serum GGT among these Black Bantu CML patients. This multiple linear model was fitted after adjusting for the majority of confounding factors with almost 100% of predicted cumulative probability.

This study showed. 80% of the variance of serum GGT after adjusted confounders using multiple linear analysis globally and there was a great differential influence of partial variances (R2) of serum GGT predicted individually by age, serum cadmium, nickel, iodine, selenium, and indirect bilirubin. Moreover, the present study demonstrated that increase in age was identified as the most important independent determinant of the increase in serum GGT with individual variations R2 = 47% in comparison with respective lowest individual variations R2 = 9% for serum nickel, 6% for serum selenium, 4% for serum cadmium, 4% for serum iodine and 4% for serum indirect bilirubin.

The understanding of the Pathophysiology of serum GGT will impact on the medical biology for Black and Bantu CML patients from DR Congo and among CML cases from others countries. Further studies on GGT and glutathione homeostasis and antioxidant defense, GGT gene could be performed in DRCongo [15,36]. In terms of perspectives for CML, aging, and longer exposure to carcinogens such heavy metal, and chronic loss of antioxidant capacity (micronutrient deficiencies) will be an emerging challenges of CML in DRCongo soon as well predicted to almost tripe around 2060 among [23]. In deed aging is well-established as a biologic complex process mediated by genetic factors and environmental factors [37]. During aging, the Hematologic Stem Cells (HSC) will experience DNA damage, telomerase shortening, oxidative stress and poor homing efficiency [38, 39]. Therefore, genetic and epigenetic damage research is needed in CML patients over 65 years [23].

Limitations and Strength

This is the first study to characterize the clustering of several markers of oxidative and metal-toxicity and micronutrient deficiencies among Black Bantu CML patients. Despite this strength, the study was limited by each cross-sectional design without causal association only demonstrated by cohort studies (longitudinal cohort). Another limitation in this study was observed in the multiple linear analysis with 20% of unknown factors.

Conclusion

The present findings support a significant role of aging oxidative stress, and persistent unbalance between exaggerated prooxidant metal toxicity-urban pollution and loss of antioxidant ability to repair cellular damage in Bantu adults CML in Kinshasa. Serum GGT might be considered as a cheap proxy of expensive and unavailable, early, precise and efficient pathological-cytogenetical tools for diagnose treatment of CML from poor Kinshasa megacity DRC.

Confilt of Interest

There is no competing financial interest in relation to the work described.
Acknowledgments

The authors wish to express their appreciation to the study participants and to the respective staff of the Kinshasa University Clinics. This study was supported by Grant-in-Aid from Alumni, Professor Alfons Verdonck from KULeuven, Belgium.

References

Journal of Anesthesia & Clinical Care
Journal of Addiction & Addictive Disorders
Advances in Microbiology Research
Advances in Industrial Biotechnology
Journal of Agronomy & Agricultural Science
Journal of AIDS Clinical Research & STDs
Journal of Alcoholism, Drug Abuse & Substance Dependence
Journal of Allergy Disorders & Therapy
Journal of Alternative, Complementary & Integrative Medicine
Journal of Alzheimer’s & Neurodegenerative Diseases
Journal of Angiology & Vascular Surgery
Journal of Animal Research & Veterinary Science
Archives of Zoological Studies
Archives of Urology
Journal of Atmospheric & Earth-Sciences
Journal of Aquaculture & Fisheries
Journal of Brain Research & Neuroscience Research
Journal of Cancer Biology & Treatment
Journal of Cardiology: Study & Research
Journal of Cell Biology & Cell Metabolism
Journal of Clinical Dermatology & Therapy
Journal of Clinical Immunology & Immunotherapy
Journal of Clinical Studies & Medical Case Reports
Journal of Community Medicine & Public Health Care
Current Trends: Medical & Biological Engineering
Journal of Cytology & Tissue Biology
Journal of Dentistry: Oral Health & Cosmesis
Journal of Diabetes & Metabolic Disorders
Journal of Dairy Research & Technology
Journal of Emergency Medicine Trauma & Surgical Care
Journal of Environmental Science: Current Research
Journal of Food Science & Nutrition
Journal of Forensic, Legal & Investigative Sciences
Journal of Gastroenterology & Hepatology Research
Journal of Gerontology & Geriatric Medicine
Journal of Genetics & Genomic Sciences
Journal of Hematology, Blood Transfusion & Disorders
Journal of Human Endocrinology
Journal of Hospice & Palliative Medical Care
Journal of Internal Medicine & Primary Healthcare
Journal of Infectious & Non Infectious Diseases
Journal of Light & Laser: Current Trends
Journal of Modern Chemical Sciences
Journal of Medicine: Study & Research
Journal of Nanotechnology: Nanomedicine & Nanobiotechnology
Journal of Neonatology & Clinical Pediatrics
Journal of Nephrology & Renal Therapy
Journal of Non Invasive Vascular Investigation
Journal of Nuclear Medicine, Radiology & Radiation Therapy
Journal of Obesity & Weight Loss
Journal of Orthopedic Research & Physiotherapy
Journal of Otolaryngology, Head & Neck Surgery
Journal of Pharmacology, Pharmaceutics & Pharmacovigilance
Journal of Physical Medicine, Rehabilitation & Disabilities
Journal of Plant Science: Current Research
Journal of Psychiatry, Depression & Anxiety
Journal of Pulmonary Medicine & Respiratory Research
Journal of Practical & Professional Nursing
Journal of Reproductive Medicine, Gynaecology & Obstetrics
Journal of Stem Cells Research, Development & Therapy
Journal of Surgery: Current Trends & Innovations
Journal of Toxicology: Current Research
Journal of Translational Science and Research
Trends in Anatomy & Physiology
Journal of Vaccines Research & Vaccination
Journal of Virology & Antivirals
Archives of Surgery and Surgical Education
Sports Medicine and Injury Care Journal
International Journal of Case Reports and Therapeutic Studies
Journal of Ecology Research and Conservation Biology
Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php