Growth Hormone Secreting Ectopic Pituitary Adenoma: Case Report and Literature Review

Sarah Kawtharani1, Bader Ali2, Elias Horanieh3, Mohammad El Housheimy1, Houssein Darwish4* and Marwan Najjar4*

1Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
2Medical Student, University of Balamand, Beirut, Lebanon
3Department of Surgery, University of Balamand, Beirut, Lebanon

Abstract

Background: Pituitary adenomas are common primary brain tumors that occur in the sella turcica where the pituitary gland resides. However, rare condition where separate hormone secreting ectopic pituitary tissue can be present elsewhere in the brain.

Case: A 68-year-old female patient presented to our institution with growth hormone secreting pituitary adenoma. MRI showed normal sellar pituitary gland. A lesion was later identified eroding the sella, sphenoid bone, clivus, and dorsum sellae. Histopathological studies showed growth hormone secreting pituitary tissue.

Conclusion: Hormone secreting ectopic pituitary tissue can be present elsewhere in the brain and should be suspected in any patient with abnormally high levels of pituitary hormones with normal sellar MRI images.

Introduction

Pituitary Adenomas (PA) represent 10% to 15% of all reported brain tumors, being among the most prevalent intracranial growths [1]. They are seen in 1 out of 865 to 2688 individuals [2].

Embryologically, the pouch of Rathke proliferates to form the anterior pituitary lobe, which, in turn, may abnormally replicate and grow into PA [3]. According to their size, pituitary adenomas fall under two categories. When the tumor size is 10 mm or more, PAs are called macroadenomas and they account for about 50% of all PAs, while the other half are microadenomas [4]. Another classification is based on their glandular function. About 44% of PAs are called functional PAs due to their hormonal secretion ability [5]. Normally, PA are found in the Sella Turcica (ST). A quite rare form of pituitary adenomas with roughly 100 cases documented in the literature are called EPA, or ectopic pituitary adenomas. EPA are not connected in any way to the normal pituitary gland and are always found outside the ST [6]. In previous studies, it has been shown that females are at risk of developing EPA twice as frequently as males [7,8]. A large percentage of EPA are benign, although a minority of cases can develop into malignant tumors [9]. Ectopic pituitary adenomas can produce any type of major pituitary hormones [10]. They can be GH, ACTH, PRL or TSH secreting tumors. Growth hormone secreting ectopic pituitary adenomas are extremely rare. Excessive GH secretion by sellar pituitary adenomas account for 98% of all cases. Less than 2% is secreted by NET and the rest are produced by EPA [11]. Only 11 cases of GH-secreting ectopic pituitary adenomas have been confirmed by histopathology and reported in the literature so far [12].

In this article, we report an additional rare case of growth hormone-secreting ectopic pituitary adenoma in the sphenoid sinus with a review of the literature.

Case Description

We present the case of a 68-year-old female patient who is known to have paroxysmal atrial fibrillation who presented to our institution with acromegaly symptoms. History goes back to 5 months prior to her presentation when the patient started complaining of fatigue and shortness of breath. Investigations were done which showed paroxysmal atrial fibrillation, hyperthyroidism and cardiomyopathy. MRI brain showed a sphenoid lesion extending to the sellar floor. The patient noticed an increase in shoe size and size of her hand and fingers. On exam, wide MCP joints were apparent. Hormonal profile showed elevated IGF levels. CT sinuses, done as part of pre-op planning, showed soft tissue mass eroding the floor of the sella, sphenoid bone and clivus. There is soft tissue mass in the right aspect of the sella, measuring approximately 1.2cm and the rest of the sella is seen empty (Figure 1). There is soft tissue lesion eroding the floor of the sella, eroding the sphenoid bone, the clivus and dorsum sellae, it is measuring approximately 3.2cm in its AP diameter and 1.4cm in its supero-inferior dimension (Figure 2). Anteriorly there is erosion of the anterior wall of the sella, significant thinning of the left sphenoid sinus. Intra-op, the tumor was apparent in the sphenoid sinus and the arachnoid membrane was bulging into the sinus. A grayish friable lesion was identified. Using ring curette and suction, the lesion was smoothly suctioned and dissected in all directions. Pathology showed growth hormone secreting pituitary adenoma.

Case:

Sarah Kawtharani1, Bader Ali2, Elias Horanieh3, Mohammad El Housheimy1, Houssein Darwish4* and Marwan Najjar4*

1Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
2Medical Student, University of Balamand, Beirut, Lebanon
3Department of Surgery, University of Balamand, Beirut, Lebanon

A lesion was later identified eroding the sella, sphenoid bone, clivus, and dorsum sellae. Histopathological studies showed growth hormone secreting pituitary tissue.

Conclusion: Hormone secreting ectopic pituitary tissue can be present elsewhere in the brain and should be suspected in any patient with abnormally high levels of pituitary hormones with normal sellar MRI images.
Discussion

Only a few previous studies have tackled the origin of ectopic pituitary adenomas. Normally, the main pituitary gland divides into Sellar and pharyngeal sections around the eighth week of pregnancy. A pharyngosellar pituitary is an uncommon pituitary deformity that is caused by the disruption of this division. Many individuals often have a Pharyngeal Pituitary (PhP) as part of their anatomy. However, compared to the Sellar pituitary, PhP produces pituitary hormones around 4 to 10 weeks later. Pharyngeal pituitary can manifest as extracranial pituitary adenomas originating in the nasopharynx, clivus or the sphenoid sinus. These adenomatous pituitary masses may also result from the remaining pituitary tissue fragments in the craniopharyngeal canal that is present in 0.42% of asymptomatic people [13]. Sphenoid sinus is the most common site of EPA. In the past 26 years, ectopic pituitary adenomas of the sphenoid sinus have been reported in 7 out of 15 cases that we have collected for the literature review (Table 1). The finding of a pituitary mass inside the sphenoid sinus does not necessarily indicate the presence of an ectopic pituitary adenoma. It can be explained by a tumor inside the sella eroding the sellar wall and protruding to the sinus with the dura extending downwards [12,14]. Alternatively, a diagnosis of EPA cannot be excluded if there is invasion of the Sella Turcica [15]; although most of the cases reported previously demonstrated an intact sella and dura (Table 1). In our patient, MRI imaging revealed a mass occupying the sphenoid sinus, eroding the clivus and the sellar wall. The mass was not found to be occupying the sella or protruding inferiorly into the sinus; thus, the diagnosis of ectopic pituitary adenoma was made based on the imaging and intra-op findings where part of the tumor was encountered inside the sphenoid sinus independently of the sellar pituitary. Furthermore, the patient presented to our hospital with signs of acromegaly, therefore, GH-secreting EPA was confirmed by high levels of serum IGF-1 along with the pathology results. Growth hormone secreting ectopic pituitary adenoma in the sphenoid sinus was first written about by Erdheim [16]. Through the review of literature (Table 1), we have identified 6 GH-secreting ectopic pituitary adenomas out of 15 cases reported in the past few years. Ectopic pituitary adenomas can stem from various sites including sphenoid sinus, superior orbital fissure, temporal lobe, third ventricle, and nasal cavity [17].

Literature reviews of EPA by Kepes and Fritzlen in 1964 identified a case of nonfunctional ectopic pituitary adenoma in the sphenoid sinus [18]. In 1975, Ortiz-Suarez and Erickson reported a case of ACTH-secreting EPA in the superior orbital fissure [19]. From 1909 until 1993, ectopic pituitary adenomas were most reported inside the SS [17]. 0.48% of all cases of ectopic pituitary adenomas are seen in the SS of which 25% are necrotic [17]. A case was described by Neilson and de Chadarevian in 1987 shows an ectopic pituitary adenoma in the temporal lobe [20]. Another case was identified in the third ventricle in 1990 by Kleinschmidt [21]. In 2004, a case of EPA was discovered in the cavernous sinus and reported by Mitsuwa and Nakas [22]. Ectopic pituitary adenoma in the sphenoid sinus extended to the nasal cavity through the craniopharyngeal canal was first reported by Kaushik in 2010 [23]. In addition, a case of parapharyngeal space was first documented in 2014 by Xiaofeng Wu using CT brain [10]. Despite highly developed imaging techniques, ectopic pituitary adenomas are still often misdiagnosed or diagnosed after some delay due to their rarity and complexity, therefore, can resemble many tumors of the skull base. However, EPA should always be kept in the differential diagnoses in patients with abnormally elevated levels of one of the major anterior pituitary hormones with an intact Sella turcica on MRI.

Table 1: Literature Review of Ectopic Pituitary Adenomas

<table>
<thead>
<tr>
<th>Author</th>
<th>Age/Sex</th>
<th>Associated Signs and Symptoms</th>
<th>Type of EPA</th>
<th>Location</th>
<th>Imaging Findings</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al. [9]</td>
<td>47/F</td>
<td>Hematuria, Epistaxis, Headache, Dizziness</td>
<td>ACTH-secreting</td>
<td>Sphenoid sinus and clivus</td>
<td>Non-contrast CT: Hypodense mass in the sphenoid sinus and clivus with intact Sella</td>
<td>Surgical resection followed by radiation therapy</td>
</tr>
<tr>
<td>Wu et al. [10]</td>
<td>59/F</td>
<td>Gradually enlarging painless lump on the neck No neurological or endocrine symptoms</td>
<td>GH-secreting</td>
<td>Right parapharyngeal space</td>
<td>Contrast-enhanced CT: Hyperdense density mass in the carotid sheath area</td>
<td>Tumor resection from the parapharyngeal space. The mass was totally removed along the vagus nerve inside the carotid sheath</td>
</tr>
</tbody>
</table>

Figure 1: CT brain bone window showing soft tissue lesion eroding the floor of the sella, eroding the sphenoid bone, the clivus and dorsum sellae, it is measuring approximately 3.2cm in its AP diameter and 1.4cm in its supero-inferior dimension.

Figure 2: Soft tissue mass in the right aspect of the sella, measuring approximately 1.2cm and the rest of the sella is seen empty.

Table 2: Characteristics of the cases discussed in the literature review.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Age/Impacted Side</th>
<th>Symptoms</th>
<th>Imaging Findings</th>
<th>Treatment/Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramirez et al. [11]</td>
<td>43/F</td>
<td>Menstrual abnormalities, fatigue, sleep apnea, dental spacing, acanthosis nigricans</td>
<td>Gado-linum-enhanced T1W: Hyperintense mass in the sphenoid sinus with intact Sellar turcica and dura</td>
<td>Octreotide-LAR 20 mg for 4 months followed by surgical resection, Trans-sphenoidal approach</td>
</tr>
<tr>
<td>Appel et al. [12]</td>
<td>50/F</td>
<td>Generalized muscle and joint pain, headache, enlargement of face, hands and feet</td>
<td>Gado-enhanced T1W: Hyperintense lesion on the right side of PG</td>
<td>Endoscopic transsphenoidal surgery confirmed a mass inside the clivus with an intact Sellar floor, dura and PG</td>
</tr>
<tr>
<td>Mitsuaya et al. [22]</td>
<td>55/F</td>
<td>Enlargement of the hands, feet and hands</td>
<td>Gado-enhanced T1W: Mass surrounding the right ICA in the right cavernous sinus with an intact pituitary gland</td>
<td>Trans-sphenoidal surgery. Bromocriptine Gamma-knife surgery since bromocriptine treatment was unsuccessful</td>
</tr>
<tr>
<td>Kaushik et al. [23]</td>
<td>76/M</td>
<td>Right upper extremity weakness</td>
<td>Trans-sphenoidal resection</td>
<td>Endoscopic transsphenoidal resection</td>
</tr>
<tr>
<td>Pojkic et al. [24]</td>
<td>65/F</td>
<td>Headache, nasal stuffiness</td>
<td>Trans-sphenoidal resection</td>
<td>Endoscopic transsphenoidal resection</td>
</tr>
<tr>
<td>Wang et al. [25]</td>
<td>66/M</td>
<td>Double vision Right proptosis</td>
<td>Inactive</td>
<td>Gado-linum-enhanced T1W: Enhancing tumor in the sphenoid-no-orbital region with intact pituitary gland inside the Sellar Turcica</td>
</tr>
<tr>
<td>Mudd et al. [26]</td>
<td>78/M</td>
<td>Bilary vision Leftward gaze double vision</td>
<td>Inactive</td>
<td>Clivus</td>
</tr>
<tr>
<td>Ferraz-Filho et al. [27]</td>
<td>30/F</td>
<td>Signs and symptoms of acromegaly</td>
<td>Clivus and Sphenoid Sinus</td>
<td>T1/T2W: Lytic lesion inside the clivus with central enhancement, Intact Sellar turcica</td>
</tr>
<tr>
<td>Erdogan et al. [28]</td>
<td>50/F</td>
<td>Breathing difficulties</td>
<td>TSH and PRL secreting</td>
<td>Clivus</td>
</tr>
<tr>
<td>Biobeff et al. [29]</td>
<td>64/F</td>
<td>Left-sided hearing loss</td>
<td>GH-secret-ing</td>
<td>Sphenoid Sinus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gado-linum-enhanced T1W: Irregularly enhancing lesion in the Sphenoid Sinus pretruding to the left Choana</td>
</tr>
</tbody>
</table>

Table 1: Ectopic pituitary adenomas of the sphenoid sinus have been reported in 15 cases.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Gender</th>
<th>Age (Years)</th>
<th>Excluded Features</th>
<th>ACTH-secreting</th>
<th>Cavemos sinus</th>
<th>T1W: well-enhancing mass in the left side extending to the adjacent subarachnoid space with intact PG inside the ST</th>
<th>Left orbitozygomatic approach. Total resection through the Parkinsons’ triangle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hata et al. [30]</td>
<td>24/F</td>
<td></td>
<td></td>
<td>ACTH-secreting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horiuchi et al. [31]</td>
<td>75/M</td>
<td></td>
<td></td>
<td>ACTH-secreting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akyel et al. [32]</td>
<td>2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Pituitary adenomas represent 10-15% of all brain tumors and are normally found in the sella turcica. However, the presence of ectopic pituitary gland tissue was reported in other areas of the brain and was found to be a separate entity from the original pituitary gland with hormone secreting capabilities. Ectopic pituitary adenomas are twice more common in females than males with a large percentage being benign adenomas. Therefore, due to the capability of such tumors to be located elsewhere, normal sellar CT or MRI scans in a patient with elevated pituitary hormones should be suspected of having ectopic pituitary adenoma.

References

