
 The surface of Earth is coated by approximately 29% land area 
and most of this surface area comprised of soils whose composition is 
changing over time by several biological, chemical and physical factors 
[1]. Soil is a mixture of organic and inorganic materials and thus can 
contain lots of mineral particles including feldspars, quartz, phyllo-
silicates in various crystalline forms, carbonates, sulfates, phosphates, 
salts, heavy minerals like pyroxenes and also special ones with regard 
to human health like asbestos and erionite. However, the world-wide 
main constituents of mineral dust are clay minerals and quartz [2].
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 Mineral dusts naturally can be generated via wind erosion or via 
human activities such as agricultural land use or mining. The naturally 
originated ones from the land surface is the major fragment. Atmo-
spheric dust’s mineral particles can be of prominent size range. 500-
1000 μm sized particles get dislodged from the soil surface, but the 
ones with a diameter less than 75 μm can get suspended in the atmo-
sphere and follow air currents [1]. The median size of the far travelled 
dust is even smaller, around 2 μm [3]. Therefore soil dust also includes 
nanoparticles. The term nanoparticle is used for particles in the size 
range of 1-100 nm which makes their possible reaction potential un-
clear and unexpected reactions may be caused [4]. The atmospheric 
dust loading has been enhancing over the last years depending on 
global warming, increasing desertification and especially human ac-
tivities [5]. As a result, air pollution is a big threat for people living in 
mega cities. It is an important health problem causing several diseases 
including respiratory diseases, cardiovascular disorders, conjunctivi-
tis and skin irritations [6].

 Several minerals in the composition of atmospheric dust culminate 
in health problems for humans. Silicates represent the soil minerals 
with the highest health risks [1]. Atmospheric soil dust of crystalline 
silica, coal, asbestos and erionite (a fibrous sodium-rich zeolite) can 
induce adverse respiratory health effects. Silica, coal and asbestos have 
unique toxic features and almost no other mineral can be compared to 
them [7-9]. Other minerals like metal oxides, talc, kaolinite, smectites 
and mica can also give harm, but only if the exposure is for a definite 
time period and certain intensity [10].

 Some aerosol particles with large sizes can be formed in the atmo-
sphere under special atmospheric conditions. Pinkish mineral micro-
spherulites defined as iberulites are spherical mineral aggregates with 
a large size (50-300 µm) that can be found at the highest levels of solid 
additions in summer. Diaz-Hernandez and Parraga (2008) collected 
samples of iberulites in Southern Spain [11]. Iberulites are formed and 
structured in the troposphere after transport of the dust from far plac-
es like Sahara Desert and composed of complex mineral associations 
whose phases have diverse hygroscopic properties including mainly 
silicates, carbonates, sulphates, halides, oxides and phosphates [12]. It 
is clearly seen that particles > 10 µm have attracted little attention but 
they can be transported over long distances directly from their sourc-
es and may play major roles in regional circulation of materials [13]. 
Long-range transport of giant particles have been reported in Saharan 
dust across the Atlantic Ocean and the Mediterranean Sea [11,14].

 Common and iberulite-rich aerosols from the Sahara include 
mainly quartz, feldspars, carbonates and clays (illite, smectite and 
kaolinite). The texture of iberulites consists of large mineral particles 
embedded in a matrix of clay minerals also surrounding the entire 
spheroidal aggregate. Clays play a major role in their formation and 
providing a mechanical strength to the aggregates. The clay mineralo-
gy has been addressed in several occasions and pointed out to depend 
on sources and sampling location [14,15]. Due to the data from the 
recent studies clay minerals are essential for their formation of these 
large mineral aggregates within water droplets in the atmosphere. 
They also influence the fabric and porosity of aggregates [11,16,17].

 The best known minerals due to their human health effects are sil-
ica, coal, asbestos and erionite. Mineral dusts can affect humans by  
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Abstract
 Mineral dusts naturally can be generated via wind erosion or via 
human activities such as agricultural land use or mining. Some types 
of mineral dusts for instance asbestos, coal and silica can evoke 
several respiratory diseases. Inhalation of these dusts can lead to 
asbestosis, Coal Workers’ Pneumoconiosis (CWP), silicosis and 
lung cancer. Inflammatory cell activation, fibroblast cell proliferation 
and the increased synthesis and/or disruption of extracellular matrix 
components are the underlying facts of the fibrotic lung diseases 
pathogenesis. Several mediators such as cytokines, chemokines 
and growth factors play a major role in the onset, progression and 
termination of these reactions. Cytokines have major role in inflam-
mation and immune response that are important mediators in hu-
mans related with mineral dusts exposure and toxicity. Presence 
of permanent stimulus and chronic release of cytokines may end 
in some autoimmune and inflammatory diseases such as silicosis 
and CWP. Cytokine genes polymorphisms have been reported to 
assist in the inflammatory diseases. Epidemiological studies have 
indicated that Single Nucleotide Polymorphisms (SNPs) arose in cy-
tokine genes are related with chronic inflammatory or autoimmune 
illnesses. Due to the data of recent studies it’s obviously shown that 
the inflammatory cytokines TNF-α and IL-1 are related with the oc-
currence and development of the CWP, silicosis and asbestosis. In 
this article, the toxic potentials of most common mineral dusts, the 
relationship and the roles of cytokines and their possible genetic 
variations in the development of these dust-induced diseases were 
highlighted.
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several ways of action. Dust particles penetrate the human body es-
pecially by inhalation or ingestion and through the skin. While some 
mineral dust is toxic by itself, others can carry toxic substances enter-
ing the human body together [1]. Exposure risk can be increased at 
places mostly related with the origin of the mineral dust. People living 
or working closer to dust sources are at higher risk of health problems 
of mineral dust. Therefore, mostly affected individuals are agriculture 
workers, construction workers and miners. The health risk of inhaled 
mineral dust depends on the exposure level the duration and the fre-
quency of the exposure the chemical and mineralogical composition 
of the particle [1,5]. If the aerodynamic diameters of the inhaled min-
eral dusts are bigger than 10 μm, they are stuck in the upper respirato-
ry tract where they get trapped in the mucous lining of the nasopha-
ryngeal tract. If their aerodynamic diameters are smaller than 10 μm 
(PM10), they can easily penetrate more deeply into the lung passages 
to the tracheobronchial regions, where they also get trapped in a lay-
er of mucus [10]. Due to WHO limits and EPA standards, particles 
≤ 2.5 μm (PM2,5) are accepted as unhealthy to humans and defined 
as respirable dust and those particles can easily reach the alveoli re-
gion of the lung where gas-exchange is performed [18]. According to 
WHO (accessed 29th June, 2013) the acceptable annual mean value of 
PM10 is 20 μg/m3 and the acceptable 24 h mean value is 50 μg/m3 [19]. 
The EU (accessed 29th June 2013) has 1 year mean PM2.5 values of 25 
μg/m3, 1 year PM10 mean values of 40 and 24 h mean PM10 values of 
50 [20]. On Dec 14, 2012, the US Environmental Protection Agency 
(EPA) strengthened the nation’s air quality standards for fine particle 
pollution to improve public health protection by revising the primary 
annual PM2.5 standard to 12 micrograms per cubic meter (μg/m3). The 
EPA also has a 24 h PM2.5 standard of 35 μg/m3 and a 24 h standard 
of 150 g/m3 for PM10 (accessed 29th June, 2013) [21]. The dust depo-
sition adds exogenous mineral and organic materials to terrestrial 
surfaces, having a significant impact on ecosystems, biogeochemical 
cycles [22,23] and also on health [24-26].

 Subject to shape, size, chemical composition, surface state of the 
particle, length of exposure and certain lung functions, different re-
sponses can be triggered [5,9]. Mineral dust inhalation can lead to 
severe diseases such as silicosis, asbestosis, coal workers’ pneumoco-
niosis (termed as pneumoconiosis) lung and pleura cancer [18].

 Figure 1 demonsatrates the fate of inhaled mineral dust particles in 
the human body. Xenobiotics cause the activation of macrophages [1]. 
The activated macrophages ingest the particles and due to the acidic 
pH and digestive enzymes found in their lysosomes they can degrade 
and clear the particles [2]. They also release chemicals [3] to activate 
other macrophages [4]. Depending on their death [5], they release 
their contents, to recruit new macrophages [6]. This cycle of cell death 
and newly recruited cells in the alveoli can give rise to enhanced in-
flammation [27].

 The cytokines, growth factors and Reactive Oxygen Species (ROS) 
released following the death of macrophages [7], can directly harm 
the alveoli cells. Not all of the particles in the alveoli get degraded by 
the macrophages or dissolved but some remain as free. While some 
of the remaining ones give no harm others can damage the epithelial 
cells [8] and stimulate fibroblastic cells relatively [9]. Fibroblastic cells 
can make a way for the deposition of a protein called collagen. If those 
processes become permanent, it may end in the development of lung 
cancer or fibrosis [10].

 The mineral fibers can give harm to the surrounding cells and 
macrophages and they are even able to cause mesothelioma [12] a  

fatal neoplasia of pleural mesothelial cells (membrane that covers the 
lung) because of their possible migration to the pleura [9,11,29]. The 
nanoparticles are capable of migrating through the alveolar mem-
brane to enter the interstitial lung tissue. They can abide there or fur-
thermore migrate to the lymphatic system. Generally, most of those 
filtered particles in the lymph nodes stay there. Nevertheless some 
entered into the bloodstream via the lymph [13]. By this way, they 
can easily arrive other organs and tissues [14] to give harm at other 
regions of the body [9,29].

 Silicosis, asbestosis and Coal Workers Pneumoconiosis (CWP) are 
the well known mineral dust induced diseases.

Silicosis
 Silicosis, the most ancient recognized occupational disease, exclu-
sively occurs by crystalline silica exposure [30]. At the same time, it 
appears frequently even in developed countries, particularly in cer-
tain occupations such as mining, sandblasting, surface drilling, stone 
cutting, construction, pottery making and silica flour mill operations 
[31]. Due to environmental silica and mixed dust exposures, lung 
fibrosis and pulmonary alterations have been observed in the lungs 
of humans and farm animals. Exposure to crystalline silica can cul-
minate in adverse pulmonary responses such as acute, accelerated, 
chronic and conglomerate silicosis [32]. In addition, silica exposure 
can also be associated with systemic and autoimmune diseases such 
as Rheumatoid Arthritis (RA), Systemic Lupus Erythematosis (SLE), 
nephropathy, proliferative glomerulonephritis [33], tuberculosis and 
lung cancer [34,35].

Asbestosis
 Asbestos is the common industrial term covering six different 
natural fibrous silicates. Amosite, crocidolite, tremolite, anthophyllite 
and actinolite all pertain to the amphibole mineral group, chrysotile 
is a serpentine exceptionally. These were exploited largely for industri-
al processes in the past century because of their unique and versatile 
properties. Nowadays, asbestos is taken into account because of its 
potency to develop asbestosis (a debilitating and often fatal lung dis-
ease) and malignancies such as lung cancer and pleural mesothelioma, 
occurring many time later after exposure.

 Asbestos refinement and its usage have been restricted progres-
sively or banned by several countries. The European Union banned 
asbestos in 2005. On the contrary, asbestos is yet widely produced and 
used in developing countries [36]. Chronic inhalation of asbestos can  

Figure 1: The fate of inhaled mineral dust particles [28].
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lead to asbestosis a degenerative fibrosis of the lung, mesothelioma a 
cancerous tumor of the lung lining or pleural cavity or lung cancer [5]. 
All asbestos minerals contain iron ions, as a result the fibers can also 
release substances like reactive iron, triggering free-radical produc-
tion. Those radicals give harm to the DNA [9,10].

Coal Workers’ Pneumoconiosis (CWP)
 Coal Workers’ Pneumoconiosis (CWP) is an occupational lung 
disease characterized by fibrotic nodular lesions following inhalation 
of coal dusts. The severity of the disease is associated with the total 
dose and exposure intensity. Coal is a fossil fuel that have been min-
ing throughout the world. The formation of coal mine dust during 
underground mining is the most important source of exposure. Sur-
face mining and underground mining are the two basic types of coal 
mining processes. Underground miners are at higher risk of develop-
ing CWP than strip or surface miners because of the higher ambient 
dust levels. CWP is defined as the accumulation of the coal dust in the 
lungs and the tissue’s reaction to its presence [37] and divided into two 
stages: Simple Pneumoconiosis (SP) and Progressive Massive Fibrosis 
(PMF) according to the size and profusion of the lesions [38]. Cyto-
kines play a major role in a wide spectrum of biological processes such 
as inflammation and immune response and are important mediators 
of the toxic and pathogenic effects observed in exposed individuals 
[39]. Inhalation of coal dust can also cause bronchitis, emphysema, 
caplan syndrome and silicosis [33].

 For many years, it has been thought that within the coal compo-
nents quartz was the active agent leading the development of CWP 
but due to the data of recent studies, it has not an important role in 
the prevalence of CWP as thought [40]. Following Heppleston’s report 
[40], Ghio and Quigley [41], addressed the role of iron in CWP. They 
indicated certain types of transition metals including iron tend to be 
concentrated in the lungs of miners with CWP. They suggested that 
humic-like substances in coal dust with iron clad-ions catalyze the ox-
idation generation and the accumulation of iron in tissues of CWP. 
The level of iron in coal is termed as Bio Available Iron (BAI) is related 
with the development of the disease. Several studies have been done 
to see whether there is a relationship between BAI in coal account 
for regional differences in both the prevalence and severity of CWP 
or not and according to their results, they found positive relationship 
[42-47]. Interstitial lung disease caused by silica and/or coal dust ex-
posure is the outcome of lung cells damage and lung scarring related 
with fibrotic process activation. The under mentioned mechanisms 
have been proposed to characterize this damage and scars [31,48];  
Direct cytotoxicity: Chemical features of silica or coal dust reacted 
with lung cells, causes damage to cell membranes following mem-
brane lipid peroxidation. Damaged cells may release intracellular en-
zymes, able to provoke further tissue damage, resulting in scarring or 
alveolar septa destruction.

 Activation of oxidant formation by alveolar macrophages: Silica or 
coal dust stimulates the formation of ROS from alveolar macrophages, 
destructing the antioxidant lung defense leading to lipid peroxidation 
and cell injury. This kind of injury may result in scarring or alveolar 
septa destruction.

 Stimulation of the inflammatory cytokine and chemokine secre-
tion from alveolar macrophages and/or alveolar epithelial cells: These 
inflammatory mediators act as chemoattractants in order to recruit 
Polymorphonuclear leukocytes (PMNs) and macrophages from 
pulmonary capillaries to the air gaps. These cytokines also activate  

pulmonary phagocytic formation of oxidant species, ending up with 
tissue injury and scarring.

 Stimulation of fibrogenic factor secretion from alveolar macro-
phages and/or alveolar epithelial cells: Fibrogenic factor release leads 
to induction of fibroblast proliferation and/or the stimulation of colla-
gen synthesis, resulting in fibrosis.

Genetic Factors
 Multifactorial diseases include complex interactions among mul-
tiple genes and environmental factors. Susceptibility attaches to both 
intrinsic features of the host and the influence of environmental fac-
tors [49]. Genetic factors like polymorphisms are not usually sufficient 
for most diseases by themselves but important for modifying the ex-
tent or severity of the disease after initiation. Counter to mutations, 
common allelic variants are present in high frequencies (>1%) in the 
general population. Among these, the most represented type of vari-
ations is single nucleotide substitutions, defined as Single Nucleotide 
Polymorphisms (SNPs). Even though genetic association studies assist 
to reveal the contribution of genetic background in disease suscep-
tibility and severity complex interactions between genetic and envi-
ronmental factors create a challenge in understanding the aetiology 
of complicated diseases. Environmental epidemiology using genetic 
information has focused primarily on investigating hypothesis-driv-
en relations between specific polymorphisms and environmental/oc-
cupational diseases such as silicosis and CWP. The pathogenesis of 
fibrotic lung diseases contain activation of inflammatory cells, fibro-
blast cell proliferation and the increased synthesis and/or breakdown 
of extracellular matrix components [50]. Cytokines, chemokines and 
growth factors play a major role in the onset, progression and termi-
nation of these reactions so that the appeared SNPs will affect all the 
processes of the diseases.

Cytokines
 Cytokines are small cell-signaling protein molecules excreted from 
the glial cells of the nervous system and numerous cells of the immune 
system. They are a set of molecules used as signalling extensively in in-
tercellular communication and can be classified into six groups: Inter-
leukins (IL), colony-stimulating factors, interferons, Tumor Necrosis 
Factor (TNF), Growth Factors (GF), and chemokines. They are play-
ing important role in a wide spectrum of biological procedures such 
as inflammation and immune response and they are crucial mediators 
of the toxic and pathogenic effects observed in human mineral dust 
exposure. Macrophage-derived cytokines such as TNF-α and IL-1 are 
involved in coal dust-induced inflammation as proinflammatory cy-
tokines. Presence of permanent stimulus and chronic release of cyto-
kines may result in autoimmune and inflammatory diseases such as 
silicosis and CWP.

 As cytokines are key regulators of homeostatic processes, possible 
variations in their levels or their structures may be associated with 
the disease development [51]. Polymorphisms in cytokine genes have 
been demonstrated to contribute to the recognized stable inter-in-
dividual variation in the level of cytokine production rates [52-54]. 
Inter-individual differences in spontaneous as well as stimulated pro-
duction of IL-1 and TNF-α encourage the possibility that silicosis and 
pneumoconiosis severity are associated with the genetic propensity of 
the host to produce these proteins. At the IL-1 and TNF loci, several 
allelic variants have been found to be significantly over-represented 
in inflammatory diseases. These variations affect the level of TNF-α 
expression in response to various stimuli. Epidemiological studies  
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have indicated that cytokine SNPs occurring in both pro- and anti-in-
flammatory cytokine genes are related with chronic inflammatory or 
immune-mediated diseases [55-66].

 We also carried out two studies in our laboratory aimed to evaluate 
possible association of some TNF-α, IL-1, TGF-β and IL-6 cytokines 
gene polymorphisms in CWP and its severity in Turkish coal workers 
[67,68]. According to the results we found that TNF-α (-238) variant 
may be a risk factor in both development and the severity of CWP, 
while TNF-α (-308) variant seems to be important only in disease se-
verity. On the contrary, IL-6 variant may have a protective effect on 
the development and disease severity [67] and the secretion of TNF-α 
from the blood monocytes of the coal workers having variant allele 
is significantly higher than those of the controls [68]. According to 
the data of recent studies, it’s obviously shown that the inflammatory 
cytokines TNF-α and IL-1 are related with the occurrence and devel-
opment of the CWP, silicosis and asbestosis [69-74].
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