

HSOA Journal of

Alternative, Complementary & Integrative Medicine

Research Article

Optimization of Ultrasonic Assisted Extraction of Polysaccharides Extract from *Aloe vera* Using Response Surface Methodology

Chiramet Auranwiwat¹*, Thanika Promchai¹, Tanasak Lamphunpong¹, Wiriyaporn Sumsakul¹, Waraporn Sorndech², Siriporn Butseekhot² and Thongkorn Ploypetchara²

¹Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand

²Expert Centre of Innovative Health Food, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand

Abstract

This study investigates the extraction of aloe vera using ultrasonic extraction technology. The key extraction parameters examined include extraction time, the ratio of raw material to solvent, and extraction temperature. The optimal extraction conditions were designed using the Box-Behnken Design, resulting in 17 experimental conditions. The extraction yield ranging between 63.47 and 92.45 %w/w. The obtained polysaccharide extract was analyzed for total sugar content, which was found to be in the range of 64.89% to 74.34% by weight. Subsequently, the results were analyzed using ANOVA to determine the optimal conditions for ultrasonic extraction of Aloe vera. The optimal extraction conditions were found to be a temperature of 45 °C, a raw material to solvent ratio of 1:7.5, and an extraction time of 17 min and 30 sec. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of polysaccharide extract from aloe vera leading to apply in functional food industry.

Keywords: Aloe vera; Polysaccharide; Response Surface Methodo logy; Ultrasonic Extraction

*Corresponding author: Chiramet Auranwiwat, Expert center of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand, E-mail: chiramet@tistr.or.th

Citation: Auranwiwat C, Promchai T, Lamphunpong T, Sumsakul W, Sorndech W, et al. (2025) Optimization of Ultrasonic Assisted Extraction of Polysaccharides Extract from *Aloe vera* Using Response Surface Methodology. HSOA J Altern Complement Integr Med 11: 641.

Received: October 10, 2025; Accepted: October 22, 2025; Published: October 29, 2025

Copyright: © 2025 Auranwiwat C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Aloe vera (Aloe vera (L.) Burm.f.) is well-known as a drought resisting and medicinal plant that belongs to Liliaceae family and widely spreads in Africa, Asia, Europe and America. It is a succulent plant that consists of characteristic fleshy, triangular, and green to grey thick leaves and tubular flowers range in color from yellow to orange [1]. The compositions of aloe vera have been investigated and revealed containing a large quantity of water (96%) along with 4% of dry matter such as polysaccharides, minerals, proteins, amino acids, fatty acids, vitamins and phenolic compounds [2,3]. According to historical utilization, aloe vera has been employed in many industries such as food supplements, cosmetics, and therapeutics. Particularly in medicinal applications, aloe vera has shown notable properties for instance promotion of wound healing and dressing, anti-inflammatory properties anticancer properties, antidiabetic effect, digestive diseases protection, bone regeneration and protection, and Cardioprotective medication [3,4].

The bioactive polysaccharides that were mainly found from aloe vera gel and powders have been published their pharmacological activities numerously, especially acemannan (acetylated mannan). Acemannan, a major polysaccharide, exhibited immunomodulatory effect to induce IL-6 and -8 expression and NF-kB/DNA binding in human gingival fibroblasts and increased TLR5/NF-kB-dependent signaling pathway [5]. In case of dental protection, acemannan stimulated denin regeneration in teeth with reversible pulpitis [6,7], a treatment of oral aphthous ulceration [8], and bone regeneration [9]. In addition to polysaccharide mixture, it showed remarkable activity of antioxidant, antidiabetic activity, antibacterial activity, antiviral activity, and antipsoriatic activity [10,11]. Hence, extraction techniques and separation conditions play important factors that can cause the quality and quantity of polysaccharide from aloe vera powders.

Extraction approaches such as ethanol precipitation, hot water, enzyme-assisted, ultrasound-assisted, microwave-assisted, and supercritical fluid extraction have been applied in many polysaccharide sources. In 2018, Souleymane and co-workers have reported the study of aloe vera extraction with hot and cold water, and boiled ethanol, the extraction with cold water (pH 5.3, 25 °C for 4 h) showed the best polysaccharide yields of $69.4 \pm 0.1\%$ [12]. Meanwhile, acemannan precipitation with ethanol solvent (40 °C for 14 h) has been investigated in 2021 by Redjeki and co-workers containing highest yield at 515.18 mg/g glucose content [13]. Response surface methodology (RSM) has been applied in aloe vera extract for enhancing aloin A and aloin B which optimized conditions including extraction time, concentration of EtOH and sonication power. The results showed extraction yield as 9.43% and aloin A (4.33 mg/g extract) and aloin B (4.46 mg/g extract) [14]. Our previous study, we reported the investigation of extraction method using enzymatic extraction and the modified encapsulation properties [15].

Herein, Ultrasonic-Assisted Extraction (UAE) has been involved for alternative green extraction that can decrease the organic solvent consumption, costs, and extraction time. To enhance extraction efficiency of aloe vera powders, this work focusses on three factors of extraction using UAE experiment, including temperature, extraction time, and raw materials to solvent ratio together with the combination of ethanol precipitation technique. All parameters of extraction were designed and generated the extraction conditions using respond surface methodology.

Materials and Methods

General experimental procedures

The ultrasonic extractor was 10 mm diameter of horn and frequency 20 kHz (Biobase, China). The spectrophotometer was determined on multimode microplate reader (Thermo Scientific, USA). Field Emission Scanning Electron Microscope (FE-SEM) was JEOL JSM7800F, Japan. D-glucose standard was purchased from Acros organics, Belgium. Phenol was purchased from Carlo Erba, Italy. Ethanol and sulfuric acid were analytical grade from Merck, Germany. The dry gel powder of *A. vera* were purchased from Subio Co., Ltd., Thailand.

Ultrasonic assisted extraction (UAE)

The extraction method was modified from our previous report [15]. The powder of A. vera was extract using water under ultrasonic conditions. There are 17 conditions were designed by Design-Expert which investigated on three factors including extraction time (5-30 min), temperature (30-60 °C) and material and liquid ration (1:5-1:10) as showed in table 1. The extract was centrifuged at 8,000 rpm at 4 °C for 30 min and then collected supernatant. EtOH was added to supernatant solution with the ratio 2:1 and kept at 4 °C for 18 h. The solution centrifuged at 8,000 rpm at 4 °C for 30 min and then collected the precipitate to be dry by freeze dryer. The extraction yield of A. vera was calculated on dry basis.

Factor	Cymbol	Levels		
ractor	Symbol	-1	0	1
Time (min)	A	5	17.5	30
material and liquid ratio (g/mL)	В	1:5	1:7.5	1:10
Temperature (°C)	С	30	45	60

Table 1: Experimental levels of the process variables.

Determination of total carbohydrate

The total carbohydrate in *A. vera* extract was determined using Phenol-Sulfuric acid method [16]. D-glucose standard was prepared as standard solutions in the range of 10 - $100~\mu g/mL$. The extract 10~mg was dissolved water and adjusted to volumetric flask 10~mL and then diluted to have a concentration at $500~\mu g/mL$. One milliliter of diluted solution ($500~\mu g/mL$) was mixed with 1~mL of 5% phenol before 5~mL of conc. sulfuric acid was added. The reaction mixture was left for 10~min before mixing and continue left for 30~min. Finally, the solutions were measured absorbance with wavelength at 490~nm by spectrophotometer.

Field Emission Scanning Electron Microscopy (FE-SEM)

The physical property of *A. vera* extract using UAE was determined on Field Emission Scanning Electron Microscope. The sample was coated with gold in a sputter coater. The experiment was performed under high vacuum conditions at an accelerating voltage of 2 kV, with image magnifications ranging from 200-1000x.

Statistical analysis

The experiments were conducted in triplicate. The Box Behnken Design (BBD) was generated from Design-Expert program. The statistical analysis was performed one-way ANOVA for multivariate analysis.

Results and Discussion

Ultrasonic assisted extraction (UAE) of A. vera

There were three factors consisted of extract time, temperature and material to liquid ratio which different level. The results of extraction yield and total carbohydrate were showed in table 2. Furthermore, the regression coefficients howed in table 3 and equation of formulate regression model (equation (1) and (2)) were generated to predict respond values. The invested models were significant suitable for F-values of 4.39 and 11.33 for yield and total carbohydrate, respectively. The relation coefficient values of R² at 0.7250 and 0.6140 showed a significant model. The response surface of yield and total carbohydrate showed in 3D plot to present the correlation of extraction factors (Figure 1).

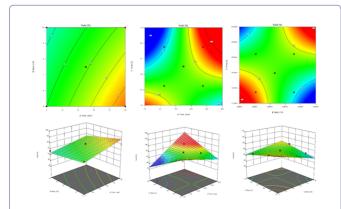

No.	A	В	С	yield (%w/w)	Total carbohydrate (μg/ml)
1	17.5	5	30	88.55	74.34
2	30	7.5	30	78.25	70.92
3	17.5	7.5	45	79.25	65.72
4	30	10	45	68.70	65.73
5	17.5	7.5	45	70.20	65.34
6	5	7.5	30	69.70	69.05
7	17.5	5	60	75.55	71.036
8	17.5	10	30	63.47	71.18
9	5	7.5	60	49.98	70.67
10	5	10	45	66.90	65.27
11	30	5	45	78.86	65.99
12	17.5	10	60	79.90	71.92
13	17.5	7.5	45	79.10	65.59
14	5	5	45	72.05	66.47
15	17.5	7.5	45	74.35	66.21
16	17.5	7.5	45	79.85	68.52
17	30	7.5	60	92.45	64.89

Table 2: The results of BBD design and respond values.

Source	Sum of Squares	df	Mean Square	F-value	p-value
Model	1114.81	6	185.8	4.39	0.0197
A	471.71	1	471.71	11.16	0.0075
В	162.36	1	162.36	3.84	0.0785
С	0.0105	1	0.0105	0.0002	0.9877
AB	6.28	1	6.28	0.1484	0.7081
AC	257.92	1	257.92	6.1	0.0331
BC	216.53	1	216.53	5.12	0.0471
Residual	422.76	10	42.28		
Lack of Fit	352.92	6	58.82	3.37	0.1299
Pure Error	69.84	4	17.46		

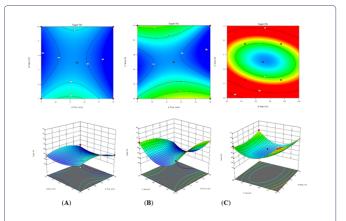
Cor Total	1537.57	16		
Std. Dev.	6.5			
Mean	74.43			
C.V. %	8.74			
R ²	0.725			
Adjusted R ²	0.5601			
Predicted R ²	-0.172			
Adeq Precision	7.5301			

Table 3: Analysis of the variance of the fitted second-order polynomial models for extraction yield.

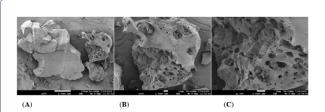
Figure 1: The 3D response surface plots of interaction between two factors on extraction yield: time and material and liquid ratio (A), time and temperature (B) and material and liquid ratio and temperature (C).

 $Y^{\text{Yield}} = 7.67875A - 4.505B - 0.03625C - 1.2525AB + 8.03AC + 7.3575BC + 74.43$ (1)

 $Y^{\rm Sugar} = -0.4906A$ - 0.4650B - 0.8722C + 0.2317AB - 1.91AC + 1.01BC - 1.82A2 + 1.41B2 + 4.43C2 + 66.28 (2)


The highest point of prediction and optimal condition was extraction for 17.5 min, material and liquid ratio of 1:7.5 and temperature at 45 °C. The extraction time showed highly significant with p value at 0.0075 which effect to yield. Then, the combination of extraction time and temperature exhibited effect on yield and total carbohydrate content [17-19]. Furthermore, the exponential of each factor presents the influenced to carbohydrate content in extract (Tables 3 & 4) [20]. This model was validated using the optimal condition for three times and results showed the extraction yield and total carbohydrate as 72.65 %w/w and 71.88 μ g/mL which closed to prediction. The results indicated was effective and successfully designed for extract A. vera using RSM (Figures 2 & 3).

Physical property of A. vera extract


The powder of *A. vera* extract was investigated surface area by SEM. The material exhibits an irregular morphology characterized by particle fragmentation and porosity, which enhances its potential for applications in substance encapsulation and facilitates efficient mass transfer in chemical reactions.

Source	Sum of Squares	df	Mean Square	F-value	p-value
Model	132.15	9	14.68	11.33	0.0021
A	1.93	1	1.93	1.49	0.2623
В	1.73	1	1.73	1.33	0.2859
C	6.09	1	6.09	4.7	0.0669
AB	0.2147	1	0.2147	0.1656	0.6962
AC	14.61	1	14.61	11.27	0.0121
BC	4.1	1	4.1	3.16	0.1187
A^2	13.96	1	13.96	10.77	0.0135
B^2	8.4	1	8.4	6.48	0.0383
C^2	82.57	1	82.57	63.71	< 0.0001
Residual	9.07	7	1.3		
Lack of Fit	2.4	3	0.7995	0.4792	0.7141
Pure Error	6.67	4	1.67		
Cor Total	141.23	16			
Std. Dev.	4.38				
Mean	64.65				
C.V. %	6.78				
R ²	0.614				
Adjusted R ²	0.5249				
Predicted R ²	0.2217				
Adeq Precision	8.2678				

Table 4: Analysis of the variance of the fitted second-order polynomial models for total carbohydrate.

Figure 2: The 3D response surface plots of interaction between two factors on total carbohydrate: time and material and liquid ratio (A), time and temperature (B) and material and liquid ratio and temperature (C).

Figure 3: Physical property of *A. vera* extract by freeze dry: 200x (A), 500x (B) and 1000x (C) under Scanning electron microscopy.

• Page 4 of 4 •

Conclusion

The optimization of extraction using ultrasonic assisted extraction for enhancing yield and total carbohydrate content exhibited the suitable condition. Temperature was the most effective factor for extraction and the optimal condition were extraction 17.5 min, material and liquid ratio of 1:7.5 and temperature at 45 °C. This model was verified and not significant between prediction and experiment values. The experiment can be applied for enrichment of bioactive compound from natural sources using green extraction technology.

Acknowledgement

The authors thanks Thailand Institute of Scientific and Technological Research (TISTR) for facilities and financial support.

References

- Bai Y, Niu Y, Qin S, Ma G (2023) A new biomaterial derived from aloe vera-acemannan from basic studies to clinical application. Pharmaceutics 15: 1913.
- Bhalang K, Thunyakitpisal P, Rungsirisatean N (2013) Acemannan, a polysaccharide extracted from aloe vera, is effective in the treatment of oral aphthous ulceration. J Altern Complement Med 19: 429-434.
- Bhuvana KB, Hema NG, Patil RT (2014) Review on aloe vera. Int J Adv Res 2: 677-691.
- 4. Kim SH, Shim, KS, Song Y, Kim K, Park CS, et al. (2023) Pharmacological and therapeutic activities of aloe vera and its major active constituent acemannan. Food Suppl Biomater Health 3: 1-13.
- Liu C, Cui Y, Pi F, Cheng Y, Guo Y, et al. (2019) Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from aloe vera: A review. Molecules 24: 1554
- Maan AA, Nazir A, Khan MKI, Ahmad T, Zia R, et al. (2018) The therapeutic properties and applications of aloe vera: a review. J Herb Med 12: 1-10
- Matei CE, Visan AI, Cristescu R (2025) Aloe vera polysaccharides as therapeutic Agents: benefits versus side effects in biomedical applications. Polysaccharides 6: 36.
- 8. Pal S, Raj M, Singh M, Saurav K, Paliwal C, et al. (2024) The Effect of Aloe vera on skin and its commensals: Contribution of acemannan in curing acne caused by propionibacterium acnes. Microorganisms 12: 2070.

- Redjeki S, Yaqin A, Iriani (2021) Extraction of acemannan polysaccharides active substance from aloe vera flesh with ethanol solvent. J Phys Conf Ser 1899: 012059.
- Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP (2020).
 Pharmacological update properties of aloe vera and its major active constituents. Molecules 25: 1324.
- Sierra-Garcíaa GD, Castro-Ríosc R, González-Hortaa A, Lara-Ariasb J, Chávez-Montes A (2014) Acemannan, an extracted polysaccharide from aloe vera: A literature review. Nat Prod Commun 9: 1217-1221.
- Souleymane T, Ibourahema C, Edith AA, Gbogouri GA, Kouakou B, et al. (2018) Effect of extraction methods on chemical and physical properties of aloe vera (*Aloe Barbadensis* Miller) polysaccharides fraction: Liguid gel and powders. Asian J Agri Food Sci 6: 97-108.
- 13. Tabatabaeian M, Esfahanian V (2023) Effect of Acemannan/Aloe vera on bone regeneration Specially in the oral and maxillofacial region: A literature review. J Res Dent Maxillofac Sci 8: 226-235.
- 14. Behaiyn S, Ebrahimi SN, Rahimi M, Behboudi H (2023) Response surface methodology optimization extraction of aloins from *Aloe vera* leaf skin by ultrasonic horn sonicator and cytotoxicity evaluation. Ind Crops Prod 202: 117043.
- 15. Auppasuk P, Ponklang W, Lueachan R, Ploypetchara T, Butseekhot S, et al. (2022) Encapsulation Properties and Digestibility of Encapsulated Aloe vera Bioactive Polysaccharides. TJST 10: 677-690.
- DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.
- Hammi KM, Hammami M, Rihouey C, Cerf DL, Ksouri R, et al. (2016) Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chem 212: 467-484.
- Wang Z, Wu S, Wang J, Yang C, Wang Y, et al. (2024) Optimization of Polysaccharide Extraction from *Polygonatum cyrtonema* Hua by Freeze– Thaw Method Using Response Surface Methodology. Molecules 29: 4879.
- Zhan Q, Zhong H, Yin M, Peng J, Chen M (2022) Optimization of the polysaccharide extraction process from *Rosa roxburghii* Tratt using Box-Behnken response surface methodology and monosaccharide composition analysis. Food Sci Technol Campinas 42: 86322.
- Pan Y, Liu C, Jiang S, Guan L, Liu X, et al. (2024) Ultrasonic-assisted extraction of a low molecular weight polysaccharide from *Nostoc com-mune* Vancher and its structure characterization and immunomodulatory. Ultrasonic sonochemistry 108: 106961.

Advances In Industrial Biotechnology | ISSN: 2639-5665

Advances In Microbiology Research | ISSN: 2689-694X

Archives Of Surgery And Surgical Education | ISSN: 2689-3126

Archives Of Urology

Archives Of Zoological Studies | ISSN: 2640-7779

Current Trends Medical And Biological Engineering

International Journal Of Case Reports And Therapeutic Studies | ISSN: 2689-310X

Journal Of Addiction & Addictive Disorders | ISSN: 2578-7276

Journal Of Agronomy & Agricultural Science | ISSN: 2689-8292

Journal Of AIDS Clinical Research & STDs | ISSN: 2572-7370

Journal Of Alcoholism Drug Abuse & Substance Dependence | ISSN: 2572-9594

Journal Of Allergy Disorders & Therapy | ISSN: 2470-749X

Journal Of Alternative Complementary & Integrative Medicine | ISSN: 2470-7562

Journal Of Alzheimers & Neurodegenerative Diseases | ISSN: 2572-9608

Journal Of Anesthesia & Clinical Care | ISSN: 2378-8879

Journal Of Angiology & Vascular Surgery | ISSN: 2572-7397

Journal Of Animal Research & Veterinary Science | ISSN: 2639-3751

Journal Of Aquaculture & Fisheries | ISSN: 2576-5523

Journal Of Atmospheric & Earth Sciences | ISSN: 2689-8780

Journal Of Biotech Research & Biochemistry

Journal Of Brain & Neuroscience Research

Journal Of Cancer Biology & Treatment | ISSN: 2470-7546

Journal Of Cardiology Study & Research | ISSN: 2640-768X

Journal Of Cell Biology & Cell Metabolism | ISSN: 2381-1943

 $\ \, \text{Journal Of Clinical Dermatology \& Therapy} \ | \ \, \text{ISSN: 2378-8771} \\$

Journal Of Clinical Immunology & Immunotherapy | ISSN: 2378-8844

Journal Of Clinical Studies & Medical Case Reports | ISSN: 2378-8801

Journal Of Community Medicine & Public Health Care | ISSN: 2381-1978

Journal Of Cytology & Tissue Biology | ISSN: 2378-9107

Journal Of Dairy Research & Technology | ISSN: 2688-9315

Journal Of Dentistry Oral Health & Cosmesis | ISSN: 2473-6783

Journal Of Diabetes & Metabolic Disorders | ISSN: 2381-201X

Journal Of Emergency Medicine Trauma & Surgical Care | ISSN: 2378-8798

Journal Of Environmental Science Current Research | ISSN: 2643-5020

Journal Of Food Science & Nutrition | ISSN: 2470-1076

Journal Of Forensic Legal & Investigative Sciences | ISSN: 2473-733X

Journal Of Gastroenterology & Hepatology Research | ISSN: 2574-2566

Journal Of Genetics & Genomic Sciences | ISSN: 2574-2485

Journal Of Gerontology & Geriatric Medicine | ISSN: 2381-8662

Journal Of Hematology Blood Transfusion & Disorders | ISSN: 2572-2999

Journal Of Hospice & Palliative Medical Care

Journal Of Human Endocrinology | ISSN: 2572-9640

Journal Of Infectious & Non Infectious Diseases | ISSN: 2381-8654

Journal Of Internal Medicine & Primary Healthcare | ISSN: 2574-2493

Journal Of Light & Laser Current Trends

Journal Of Medicine Study & Research | ISSN: 2639-5657

Journal Of Modern Chemical Sciences

Journal Of Nanotechnology Nanomedicine & Nanobiotechnology | ISSN: 2381-2044

Journal Of Neonatology & Clinical Pediatrics | ISSN: 2378-878X

Journal Of Nephrology & Renal Therapy | ISSN: 2473-7313

Journal Of Non Invasive Vascular Investigation | ISSN: 2572-7400

Journal Of Nuclear Medicine Radiology & Radiation Therapy | ISSN: 2572-7419

Journal Of Obesity & Weight Loss | ISSN: 2473-7372

Journal Of Ophthalmology & Clinical Research | ISSN: 2378-8887

Journal Of Orthopedic Research & Physiotherapy | ISSN: 2381-2052

Journal Of Otolaryngology Head & Neck Surgery | ISSN: 2573-010X

Journal Of Pathology Clinical & Medical Research

Journal Of Pharmacology Pharmaceutics & Pharmacovigilance | ISSN: 2639-5649

Journal Of Physical Medicine Rehabilitation & Disabilities | ISSN: 2381-8670

Journal Of Plant Science Current Research | ISSN: 2639-3743

Journal Of Practical & Professional Nursing | ISSN: 2639-5681

Journal Of Protein Research & Bioinformatics

Journal Of Psychiatry Depression & Anxiety | ISSN: 2573-0150

Journal Of Pulmonary Medicine & Respiratory Research | ISSN: 2573-0177

Journal Of Reproductive Medicine Gynaecology & Obstetrics | ISSN: 2574-2574

Journal Of Stem Cells Research Development & Therapy | ISSN: 2381-2060

Journal Of Surgery Current Trends & Innovations | ISSN: 2578-7284

Journal Of Toxicology Current Research | ISSN: 2639-3735

Journal Of Translational Science And Research

Journal Of Vaccines Research & Vaccination | ISSN: 2573-0193

Journal Of Virology & Antivirals

Sports Medicine And Injury Care Journal | ISSN: 2689-8829

Trends In Anatomy & Physiology | ISSN: 2640-7752

Submit Your Manuscript: https://www.heraldopenaccess.us/submit-manuscript