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Introduction
	 Cannabis sativa L. is a plant with a remarkable large number of 
varieties. It is estimated that more than 1000 strains may exist that 
differ in their content of the two main cannabinoids, the psychoac-
tive delta-9-Tetrahydrocannabinol (THC) and the non-psychoactive 
Cannabidiol (CBD). The genomic analysis of 340 varieties demon-
strated the existence of at least three major groups [1]. Another study 
that included 460 Cannabis samples which were chemically profiled 
for 44 different major cannabinoids and terpenes confirmed the clear 
differentiation into hemp (fiber-type) and drug type Cannabis (sativa 
and indica) [2].

	 Industrial hemp, hemp or fiber-type Cannabis is the term used for 
those varieties of Cannabis sativa L. in which the THC content in 
dried herbal material is below 1% (in most countries below a legal 
limit of 0.3%) and where CBD predominates (ratio CBD:THC > 1, 
usually between ~5:1 to ~20:1) in contrast to drug-type Cannabis 
(marijuana, medical Cannabis, sometimes distinguishing “sativa” 
versus “indica”). In addition, “mixed type” Cannabis varieties exist. 
A number of countries permit cultivation of hemp. In the European 
Union, for example, varieties with a THC-concentration not exceed-
ing 0.2% (“industrial hemp”) are allowed to be grown; some countries 
also prescribe the maximal THC content permitted in products such 
as in teas or extracts or allow strains high in THC for medical pre-
scription. Natural products are commonly believed to be effective, 
free from side effects and chronic toxicity; this is particularly true 
for Cannabis which has a history as folk medicine since at least 5000 
years.

	 Although CBD is a lead substance, hemp contains more than 100 
cannabinoids and numerous other phytochemicals known to be phar-
macologically active such as flavonoids, terpens and carbohydrates 
[3]. The total number of phytochemicals is likely in the order of 550 
to 600; many components remain as yet unidentified [4]. Contrary 
to what is widely believed, the plant does not produce cannabinoids 
such as CBD or THC directly but biosynthesizes their precursors 
which are the respective acids, i.e., Cannabidiolic Acid (CBDA) 
and delta-9-Tetrahydrocannabinolic Acid (the term THCA will be 
used to represent both isomers, THCA-A, THCA-B). Both, CBDA 
and THCA have Cannabigerolic Acid (CBGA), the next prominent 
cannabinoid, as precursor. Unsurprisingly, genetic varieties exist that 
produce CBG but almost no CBD or THC [5]. In nature, acids by far  
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Abstract

	 Cannabis saliva L. strains can be divided into a number of groups 
according to their content of the psychotropic phytocannabinoid del-
ta-9-Tetrahydrocannabinol (THC) and of the non-psychotropic Can-
nabinoid Cannabidiol (CBD). Although the main focus has been on 
THC in the past, there is growing interest on strains rich in CBD. 
Strains with a ratio of CBD to THC above one and a content of THC 
of less than 1%, often legally limited to 0.3%, are commonly designed 
as hemp (industrial hemp or fiber-type Cannabis) in contrast to THC-
rich strains (drug-type Cannabis and marijuana), and are grown as 
outdoor cultures in many countries. Such strains contain CBD as the 
main cannabinoid in addition to numerous other phytosubstances 
that are in general not further characterized but known to have bene-
ficial effects on health. They are used for the preparation of extracts 
and other products e.g., essential oils, teas or edibles and promoted 
as nutraceuticals in hemp shops and on the internet. These products 
are increasingly popular, and a number of countries allow the culti-
vation of strains poor in THC. THC and CBD but also many other 
phytosubstances in hemp in particular terpenes and flavonoids tar-
get the so called endocannabinoid system that regulates the homeo-
stasis of vital processes. However, the chemical profile of hemp and 
derivatives is subject to a wide variability due to a number of factors 
such as the nature of cultivars, agroclimatic conditions and meth-
ods of preparation. Hemp strains and concentrates differ not only 

in their chemical composition but also in their physiological effects. 
This heterogeneity has led to conflicting results in clinical studies 
with Cannabis formulations in the past. The physiological effects of 
purified cannabinoids differ from those observed with extracts. Most 
products from outdoor cultures cannot be sufficiently standardized, 
and so are currently unsuitable as medications. They may however 
play an important role in complementary and integrative medicine. 
For future clinical studies it is important that only well characterized 
products are used.

Keywords: Cannabidiol; Cannabis; Entourage effect; Flavonoids; 
Hemp; Terpens

http://doi.org/10.24966/ACIM-7562/100048


Citation: Nahler G, Jones TM (2018) Pure Cannabidiol versus Cannabidiol-Containing Extracts: Distinctly Different Multi-Target Modulators. J Altern Comple-
ment Integr Med 4: 048.

• Page 2 of 11 •

J Altern Complement Integr Med ISSN: 2470-7562, Open Access Journal
DOI: 10.24966/ACIM-7562/100048

Volume 4 • Issue 1 • 100048

outweigh the decarboxylated cannabinoids whereby decarboxylation 
occurs slowly through aging, not enzymatically. Commercially pro-
duced preparations are usually decarboxylated by heating. Cannabi-
noid acids exhibit their own pharmacologic profile, distinct from the 
decarboxylated form. Apart from cannabinoids, the composition and 
nature of terpenoids is also specific for each Cannabis variety, both 
qualitatively and quantitatively, and can be used for characterization 
of biotypes [6,7]. The sum of these phytochemicals makes each strain 
unique and therefore also the respective derivatives such as extracts 
and other products.

	 In some countries Cannabis is classified as a schedule I drug 
(“drug with a high potential of abuse, no currently accepted medical 
use in treatment and lack of accepted safety”, Controlled Substances 
Act, 1970, US). Such an all encompassing classification may not be 
relevant to well characterized products with extremely high purity 
with respect to CBD content. Unfortunately, it has had - and still has - 
a tremendous and negative impact on scientific research. Perhaps due 
to such general classifications, CBD has long been a neglected and 
under researched substance. Early research in humans dates back to 
1972 [8]. At that time, the CBD used in clinical studies was very likely 
not of the same quality as today when it can be produced with a purity 
exceeding 99% and even 99.5% with virtually no THC as byproduct 
(botanical drugs, e.g., CBD of BSPG, Sandwich, UK; CBD of GW 
Pharmaceuticals (Epidiolex™), London, UK or synthetic CBD). The 
interest in the potential medical utility of CBD increased rapidly few 
years ago, after several CNN-TV reports in 2013 and 2014 presented 
the case of a little girl, Charlotte Figi, suffering from treatment-re-
sistant Dravet syndrome. It was reported that her epileptic seizures 
were reduced from about 40 seizures per day down to two to four per 
month by administering a Cannabis (hemp) extract containing ~ 17% 
CBD and 0.3 to 0.5% THC. In addition to the highly purified CBD 
used today in clinical studies and available Over-The-Counter (OTC) 
from pharmacies and health food stores, numerous hemp (Cannabis) 
extracts containing between about 4% to 20% or more of CBD are 
commercialized as nutraceuticals and in complementary medicines. 
For economic reasons, they are generally derived from outdoor cul-
tures. Apart from these extracts which vary widely in their composi-
tion, a standardized prescription medicine exists that combines two 
refined extracts for medical treatment (Nabidiolex™ combined with 
Tetranabinex™, Sativex™).

	 In the following review, the physiological targets of pure CBD are 
summarized as well as mechanisms of other phytochemicals that may 
play a role as modifiers in a putative “entourage effect”. Primacy is 
given to most recent articles and to overviews on specific subjects, 
rather than to original papers.

CBD, the Main Phytocompound in Hemp, is a Modulator 
of a Number of Endogenous Physiologic Mechanisms

	 CBD is the primary cannabinoid in hemp; targets and physiolog-
ical effects are interconnected like a network (Figure 1), although 
mechanisms are very complex and still incompletely understood. A 
number of excellent recent reviews show that it is a multi-target mod-
ulator [9-12]. CBD does not act directly on the cannabinoid recep-
tors CB1 and CB2. In fact, CBD is a negative allosteric modulator 
and many of the effects on the endocannabinoid system seem to be 
indirect, through a wide range of different mechanisms that are me-
diated in part by Endocannabinoids such as Anandamide (AEA) and 

2-Arachidonoylglycerol (2-AG) and targets such as Fatty Acid Amid 
Hydrolase (FAAH), Monoacylglycerollipase (MAGL) or Peroxisome 
Proliferators Activated Receptor gamma (PPARg) some of which are 
shared with other phytochemicals [13]. A simplified overview is giv-
en below in figure 1.

	 A number of other phytochemicals in hemp are able to modulate 
not only the targets affected by CBD, but demonstrate various other 
physiological effects. This contributes to the previously mentioned 
“entourage effect” [35-37]. The two main groups that have been 
investigated in more details for their pharmacological activities are 
terpenoids and flavonoids. Of about 20,000 terpenoids known in the 
plant kingdom, 58 monoterpenes and 38 sesquiterpenes have been 
identified in hemp, but over 200 have been reported to occur in various 
Cannabis strains [7,37]. Terpenes account for about 0.01% to 3.5% 
of the dry weight; their evolution generally parallels the evolution 
of CBDA [6,38]. The nature and amounts of terpenes vary consider-
ably between Cannabis strains: of 19 strains tested, the lowest versus 
the highest amount of myrcene was found in Fedora 19 (29.4%) and 
Uniko-B (65.8%), of ß-caryophyllene in B3985TE (3.8%) and Fedo-
ra 19 (37.5%), and of limonene in Fedora 19 (0.2%) and B3985TE 
(6.9%) respectively [7,39].

	 In the majority of Cannabis strains, ß-myrcene is the dominant 
terpene; antinociceptive effects were observed in animal studies after 
10 - 20mg i.p./kg [40]. The next prominent is ß-caryophyllene and 
caryophyllene oxide, which is the substance detected by Hashish se-
curity detection dogs.

Figure 1: Examples of the interaction of CBD and non-cannabinoids in hemp with the 
endocannabinoid system (see tables for more details).

	 A1A, A2A - Adenosine receptor 1A, 2A; AEA - Anandamide; 2-AG - 
2-Arachidonoylglycerol; CB1- Cannabinoid receptor 1; CB2- Cannabinoid receptor 
2; FAAH - Fatty Acid Amid Hydrolase; FABP - Fatty Acid Binding Protein; GABA 
Rs - Gamma Aminobutyric Acid Receptors; GlyRs - Glycine Receptors; GPR3, 6, 18 - 
G-protein-coupled receptor 3, 6, 18; GPR55 -G-Protein-coupled Receptor 55 (orphan 
receptor); 5-HT - 5-Hydroxytryptamin receptor; MAGL - Monoacylglycerol-Lipase; 
nAChR - nicotinic Acetylcholine Receptor; NF-kB - Nuclear Factor kappa B; Nrf2 
- Nuclear factor erythroid derived 2; PPAR- Peroxisome Proliferator-Activated Re-
ceptor (g-gamma, a-alpha); TNFa - Tumor Necrosis Factor alpha; TRP - Transient 
Receptor Potential [V - Vanilloid; A - Ankyrin repeats; M - Melastatin-type]; effects of 
the most prominent cannabinoids in hemp extracts are summarized below (Table 1).
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	 Particularly ß-caryophyllene and ß-caryophyllene oxide are used 
as dietary supplements and “Generally Recognized As Safe” (GRAS) 
by the Food and Drug Administration (FDA) and the European Food 
Safety Authority (EFSA). Terpenes as well as flavonoids, and not 
cannabinoids give Cannabis strains their unique scent/“perfume”. 
As the terpenoid-profiles are strongly inherited, they may be used 
for taxonomic classification, although they are not clear markers 
[1,2,39,41,42]. The nature of terpenes differs between flowers and 
leaves. Buds and flowers contain more of the volatile monoterpenes 
such as limonene and alpha-pinene to repel herbivorous insects (Can-
nabis is wind-pollinated) whereas leaves are richer in the malodorous, 
bitter sesquiterpenes that protect the plant from grazing animals [39]. 
Interestingly, a terpenoid blend (QRD-460) that contains α-terpinene, 
p-cymene and d-limonene as the active substances, has been approved 
in the European Community as an insecticide in the cultivation of to-
mato, melon, cucumber and pepper.

	 Terpenes occur widely in the human diet and are used in a number 
of dietary supplements and flavor ingredients as well as in aromather-
apy. In addition, (+)- and (-)-alpha-pinene and (+)-3-carene are not 
only potent inhibitors of Acetylcholine Esterase (AChE) but have also 
gastroprotective effects; AChE inhibitors are commonly used to slow 
down the progression of Alzheimer’s disease [43,44].

Hemp (Cannabis) Contains Also Flavonoids

	 Flavonoids, a subgroup of polyphenols, are subject to considerable 
variation between cultivars. Both, terpenoids and flavonoids are com-
mon in the human diet and are found throughout the plant kingdom. 
Out of about 6000 flavonoids known, 26 have been identified in var-
ious Cannabis strains with apigenin, kaempferol, luteolin, orientin, 
quercetin and vitexin being the most common. Flavonoids are power-
ful antioxidants and rank among the largest group of phytonutrients. 
In plants, they are essential pigments and are found in flowers, leaves 
and stems giving them the typical color but add also to the smell and 
flavor of a particular Cannabis strain. Flowers of hemp rank among 
the plants with the highest flavonoid content and antioxidant power; 
the total content in the Cannabis leaves and flowers can reach 2.5% 
of its dry weight (green tea, for comparison: 0.5% - 1.5%); [45,46]. 
In an epidemiologic study, the daily intake of 25.9 mg flavonoids 

(quercetin, kaempferol, myricetin, apigenin and luteolin) was related 
to a significant decrease of cancer symptoms [47]. A number of sim-
ilar more recent epidemiologic but also animal studies support these 
results [48,49]. In addition to potential anticancer activity, flavonoids 
are reported to have antibacterial, antiviral, anti-inflammatory and 
hepatoprotective properties and might slow the aging process includ-
ing of the skin [50-52].

	 Similar to cannabinoids, cann (a) flavin A and cann (a) flavin B are 
unique to the genus Cannabis. Most flavonoids are soluble in water 
and readily absorbed [53]. Some are also volatile and found in Essen-
tial Oils (EO). Analysis of nine flavonoids of 53 individual Cannabis 
plants from nine countries demonstrated a high variation from plant 
to plant with no distinct taxa among them. None of the plants tested 
exhibited all nine compounds. Fiber cultivars contained less flavonoid 
material than drug type Cannabis [54,55].

	 Selected phytochemicals of hemp, their targets and effects are 
summarized below (Tables 2 and 3).

	 As can be seen, many of the terpenoids prevent the activation of 
the nuclear transcription factor NF-kB, thus suppressing the forma-
tion of pro-inflammatory cytokines such as TNF-α, IL-1β or IL-6. 
Inflammation is a characteristic of many chronic conditions includ-
ing cancer and Alzheimer’s disease. A number of terpenoids inhibit 
also the formation of pro-inflammatory metabolites notably of leu-
kotrienes and prostaglandins by the inhibition of MAGL or COX-2 
which contributes to the overall anti-inflammatory and anti-nocicep-
tive effects. The overlapping properties of many terpenoids may be 
explained in parts by their chemical relationship.

	 As shown above, many flavonoids modulate the activation of the 
nuclear transcription factor Nrf-2 which is a key factor for the regula-
tion of intracellular oxidative processes. Depending on the level, Re-
active Oxygen Species (ROS) can have pro- (low intracellular levels) 
as well as anti-cancer effects (high levels, inducing cell death). The 
maintenance of the proper balance thus decreases the risk of oxidative 
DNA damage, genotoxicity and cancer development whereby epigen-
etic mechanisms play also a role.

Cannabinoid Targets Effects (Examples) Ref.

CBD

Agonist of 5-HT1A, TRPA1, TRPV1,2,3,4; PPARg, GPR3,6,18; antagonist of 
TRPM8; 5-HT3A, GPR55, adenosine transport protein; positive allosteric modu-
lator of GABAA, GlyRs; inhibits n-AChR, NaV channels, LOX-5,-15; moderate 

inhibitor of FAAH

Anti-inflammatory, analgesic, anxiolytic, antidepressant; attenuates 
nausea, vomiting, motor and cognitive impairment; inhibits cancer cell 

growth
[14-24]

CBDA Agonist of 5HT1A, TRPA1, TRPV1, TRPV4; antagonist of TRPM8; 
inhibitor of COX-2, NAAA

Anti-inflammatory, anxiolytic, antidepressant; attenuates nausea, 
vomiting, motor and cognitive impairment; antineoplastic [16,25,26]

THC Agonist of CB1, CB2, TRPA1, TRPV2, TRPV3, TRPV4; GPR18, PPARg; 
potentiates Glycine receptors (GlyRs); antagonist of TRPM8, 5-HT3A

Anti-inflammatory, anxiolytic, pro-apoptotic effects; analgesic 
(additive with kappa-Opioid-receptor agonists) [16,27,28]

THCA Weak binding to CB1, CB2; agonist of PPARg, TRPA1, TRPV2; antagonist of 
TRPM8; weak inhibitor of FAAH, MAGL, COX-1,-2 Anti-inflammatory, neuroprotective, pro-apoptotic effects [29-31]

CBG Agonist of TRPA1, TRPV1, TRPV2, TRPV4, PPARg; alpha2-adrenoceptor, 
Antagonist of 5-HT1A, TRPM8, CB1; inhibits NaV channels, COX-2

Antiemetic (may oppose effects of CBD), anti-inflammatory, antineo-
plastic, antidepressant; stimulates appetite, neuroprotective [19,32-34]

Table 1: Main targets and effects of CBD, CBDA, THC, THCA.

CBD - Cannabidiol; CBDA - Cannabidiolic Acid; THC - delta-9-Tetrahydrocannabinol; THCA - Tetrahydrocannabinolic Acid; COX - Cyclooxygenase 1 or 2; LOX - Lipoxygen-
ase; NAAA - N-Acylethanolamine Acid Amidase; NaV - Voltage gated Na+ (channels)

http://doi.org/10.24966/ACIM-7562/100048


Citation: Nahler G, Jones TM (2018) Pure Cannabidiol versus Cannabidiol-Containing Extracts: Distinctly Different Multi-Target Modulators. J Altern Comple-
ment Integr Med 4: 048.

• Page 4 of 11 •

J Altern Complement Integr Med ISSN: 2470-7562, Open Access Journal
DOI: 10.24966/ACIM-7562/100048

Volume 4 • Issue 1 • 100048

Terpenoid Targets Effects (Examples) Ref.

α,β-Amyrin Activates CB1 (more potent than d9-THC); inhibits hydrolysis of 
MAGL, ABHD6, -12 and 2-AG; prevents NF-kB activation Antinociceptive, anti-hyperglycemic, hypolipidemic; anti-inflammatory [56-59]

Borneol Activates TRPV3; inhibits NF-kB; positive allosteric modulator of 
GABAA receptors Neuroprotective; antibacterial; occurs in hemp in low concentrations [60,61]

ß-Caryo-phyllene Selective CB2-agonist; PPARg,-a-agonist; nAChR antagonist Anti-inflammatory (comparable to dexamethasone), analgesic; antibiotic, 
antineoplastic; reduces intracellular triglyceride accumulation [62-67]

α-Humulene 
(α-caryo-phyllene) Prevents NF-kB and activator protein 1 (AP-1) activation Anti-inflammatory (comparable to dexamethasone), anti-nociceptive; 

antineoplastic; antibacterial, appetite suppressant, insecticidal [67-69]

D-Limonene + Prevents activation of NF-kB Anti-inflammatory; antineoplastic; anxiolytic, insect repellent [7,66,70-72]

D-Linalool
Linalool oxide Agonist to PPARa Anticonvulsive, antinociceptive, sedating, local anesthetic effects; reduc-

es plasma triglycerides [37,65,73,74]

ß-Myrcene + Prevents activation of NF-kB Anti-inflammatory, analgesic, sedative, muscle relaxant, blocks hepatic 
carcinogenesis by aflatoxin [37,40,66,70,75]

Nerolidol Prevents activation of NF-kB; modulates GABAA receptors Antinociceptive; anti-inflammatory, anxiolytic; enhances skin penetra-
tion, antimalarial [76]

α-Pinene + (+)-α-pinene prevents activation of NF-kB; more potent than 
(−)-α-Pinene

Anti-inflammatory; chondro-protective; acetylcholinesterase-inhibitor, 
bronchodilator, antifungal, insect repellent; antibacterial (against MRSA)

[7,37,39,43,66,71,
75,77]

α-Terpineol Inhibition of COX-2 (superior to aspirin) Anti-inflammatory, promotes wound healing [70,78]

Terpinolene
(delta-terpinene)0 Inhibits AKT-formation in leukemia cells Antiproliferative, sedative, promotes sleep; antibacterial, antifungal, 

insect repellent [79,80]

Table 2: Main targets and effects of selected terpenoids.

+ Present in hemp flower tee (Futura strain); ABHD - Alpha, Beta-Hydrolase; GABA - Gamma Aminobutyric Acid; MRSA - Methicillin-Resistant Staphylococcus Aureus; AKT 
- protein Kinase

Flavonoid Targets Effects (Examples) Ref.

Apigenin + Agonist of PPARg, Nrf-2; downregulates NF-kB; 
inhibits COX-1,-2; activation of GABAA receptors

Anxiolytic, anti-inflammatory, lowers formation of amyloid ß (Ab1-40, 
Ab1-42); nephroprotective; inhibits xanthin oxidase/anti-uricaemic effect, 

antibacterial, antiviral; genoprotective

[51]
[81-87]

Cannflavin A,B Inhibitor of prostaglandin PGE2 Anti-inflammatory (more effective than aspirin but less than dexamethasone); 
anti-protozoal-, anti-leishmanial activity [88-90]

Genistein Upregulation/agonist of PPARg, Nrf2; downregu-
lates NF-kB; modest inhibitor of FAAH

Reduces hepatic fibrosis, downregulates lipogenesis; nephroprotective, an-
ti-uricaemic effect; lowers amyloid-ß; reactivates methylation-silenced genes 

in cancer cells; phytoestrogen

[83,84,
86,91-93]

Kaempferol +
Inhibits COX-1, COX-2, LOX; agonist of PPARg, 
Nrf2; downregulates NF-kB; modest inhibitor of 

FAAH

Antineoplastic; anti-cholinesterase activity, lowers amyloid-ß formation, plas-
matic triglycerides; weight reducing; antidepressant; antibacterial, antiviral, 

antifungal, antiprotozoal
[83-85,93-96]

Luteolin + Upregulates PPARg, Nrf-2; downregulates NF-kB Anti-inflammatory; antineoplastic, increases DNA-repair/rejoining of strand 
breaks; anti-uricaemic; stimulates mineralization of osteoblasts [51,81,83-87,91,97]

Myricetin Downregulates NF-kB Antineoplastic; potentiates sperm function; antidiabetic [98-100]

Naringenin
(a glycone of 

naringin)

Agonist of PPARg, PPARa, Nrf2;
inhibits NF-kB, COX-2

Inhibits osteoclast formation, decreases fibrosis, hepato- and neuro-protective; 
crosses the BB barrier; antigenotoxic, decreases cholesterol and metabolic 

syndrome; inhibits S. aureus

[51,65,81,83,84,86,91,100-
103]

Orientin + NF-kB inhibition; Anti-inflammatory, antineoplastic; antibiotic, enhances repair of radiation 
damages [104-106]

Quercetin + Induces PPARg, Nrf-2, downregulates NF-kB; 
inhibits 5-LOX and COX-1, COX-2

Pro-apoptotic, antihistaminic; hepato-protective; anti-inflammatory; inhibits 
amyloid ß; anti-cholinesterase activity; antiviral, antibacterial; reduces blood 

pressure in hypertensive patients

[51,61,81,84-
87,91,96,97,100,107-111]

Rutin (peripheral) CB1 agonist; downregulates NF-kB; 
inhibits 5-HT3A, GABAc receptors, COX-2

Antifibrotic; decreases oxidative DNA damages; may reduce seizures and 
epilepsy-associated cognitive/behavioural symptoms; [59,61,86,91,100]

Vitexin +
(apigenin-8-C-glu-

coside)
Downregulates NF-kB

Anti-inflammatory, antihyperalgesic, antihypertensive, anticonvulsant; anti-
neoplastic, protects pancreatic ß-cells, cardio- and neuro-protective, enhances 

memory
[112-115]

Table 3: Targets and effects of selected flavonoids.
+ Present in hemp flower tee (Futura strain); BB barrier - Blood-Brain barrier; miRNA - micro RNA; MAPK - Mitogen-Activated Protein Kinase; iNOS - inducible Nitric Oxide 
Synthase; S. aureus - Staphylococcus aureus.
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The Composition of Phytocomponents in Outdoor 
Cultures is Highly Variable
	 The main difference between pure CBD and CBD-based concen-
trates (extracts named as “CBD-oil”, “hemp-oil” or “Cannabis oil”) 
is the relatively small and highly variable percentage of CBD in ex-
tracts in relation to the large number of other phytosubstances that 
are generally neither identified nor further characterized from batch 
to batch. In fact, it has been repeatedly observed that the declared 
content of CBD and/or THC in commercial products is often incorrect 
[116-118].

	 Extracts and other concentrates such as Essential Oils (EOs) are 
virtually cocktails of phytochemicals. These “oils” are not true oils 
like olive oil or hemp seed oil. Particularly their content of polyphe-
nols and terpenoids, both known to be pharmacologically active, 
contribute to the postulated “entourage effect”. The exact chemical 
composition as well as their interactions remain however essentially 
unknown. The composition depends not only on the cultivar but also 
on a number of pre- and post-harvest factors. As some components 
such as volatile monoterpens and flavonoids may be lost during pro-
cessing, the chemotypic fingerprints of extracts, EOs and other hemp 
products differ significantly from that of virgin Cannabis flowers 
[119]. Examples of agro-climatic and growth conditions influencing 
the content of CBDA (CBD) and THCA (THC) before harvest are 
given below (Table 4).

	 Flowers have the highest content of cannabinoids, followed by the 
upper leaves; i.e., decreasing gradually from the top to the bottom of 
the plant. In flowers of hemp the content of Cannabinoids particular-
ly of CBD (CBDA) increases during the whole growing period and 
accumulates in leaves and flowers at the end of the vegetative phase  
(peak about 10-11 weeks after cultivation). In contrast, the content 
of THC (THCA) in flowers of drug-type Cannabis (marijuana) tends 
to decrease at the end of the flowering period [4]. High nitrogen soil 
levels tend to increase CBD and to reduce the THC content of leaves, 
although the influence of fertilizers and other soil elements is com-
plex. Soil nutrient affect also the production and diversity of volatile 
terpenoids. Further on, the quality of outdoor-grown Cannabis and 
of the products derived is a factor of considerable variability, often 
raising concerns as to the nature of the preparations offered for sale. 
Cannabis plants extract heavy metals from the soil and accumulate 
them, among others, in leaves and buds. In addition, Cannabis prod-
ucts can be contaminated with pesticides, moulds or bacteria [123].

	 Higher contents of THC and CBD are generally found in warmer 
agroclimatic conditions and particularly in high relative humidities 
with non-significant differences between male and female flowers 
[124,125]. Temperature has in general a positive influence on yield, 
whereas rainfalls have a negative influence on the content of cannabi-
noids [122]. In a six-year field experiment with eight industrial hemp 
varieties, a considerable variability of CBD and THC was observed, 
depending on the changes of agro-climatic conditions from one year 
to another. For a specific hemp strain, e.g., Futura 77 (Fedora 19), the 
variability for THC was roughly 7 times higher than for CBD; THC 
varied between 0.045% and 1.00% (0.0225% - 0.670%) i.e., a factor 
of 22 to 30, and CBD between 1.01% and 3.26% (0.568% - 2.228%) 

i.e., a factor of 3 to 4 [122]. Such high variability of THC - even in the 
same Cannabis strain - confirms previous observations [42].

	 No systematic studies on agroclimatic influences on the content of 
terpenes and flavonoids in hemp could be found although such influ-
ences probably exist. Factors like rainfall, mean temperature, duration 
of sunshine and soil composition including pH are known to affect 
growth. Stress factors generally increase the content of flavonoids. 
Studies performed on other plants reported considerable variations 
on the composition of essential oils in response to the stage of devel-
opment and light, with an increase during flowering and a decrease 
in the fruiting stage. In addition, diurnal variations of the content of 
ß-caryophyllene (4.0% to 3.1%), a-humulene (4.0% to 2.6%), and of 
nerolidol (0.4% to 0.7%) have been observed [126,127]; these ter-
penes also occur in hemp.

	 Most manufacturers use buds or flowers for extraction but in addi-
tion whole plant extracts exist that capture a wider spectrum of phy-
tocompounds. Post-harvest processes such as (sun-) drying, storage, 
heat treatment, soaking, distillation and extraction with more or less 
polar or lipophilic solvents alters the composition further. Drying at 
temperatures below 50°C yielded the highest amount of total pheno-
lics; higher temperatures decrease not only the content of phenolics 
and volatile terpenes but also of cannabinoid acids such as CBDA 
and THCA that decarboxylate with an increasing speed above 100°C 
[53]. During drying a loss of 5% to 10% of monoterpenes may occur; 
a further, although much slower loss is observed thereafter over time 
during ambient storage [128]. Most of the commercialized hemp ex-
tracts are currently crude concentrates based on Carbondioxide (CO2) 
techniques. Although the absolute concentration of cannabinoids and 
terpenes in concentrates is higher, the relative composition of many 
components remains more or less similar [42]. When specifically the 
cannabinoid and terpenoid contents of flowers were compared to su-
percritical CO2 concentrates, the relative potencies were significantly 
different. Cannabinoid potency increased by factors of 3.2 for THC 
and 4.0 for CBD in concentrates compared to flowers. Monoterpenes 
were lost in the extraction process whereas monoterpene alcohols and 
sesquiterpenes increased by a factor between about 5 and 9 [119]. This 
underlines that the product after extraction has a different chemotypic 
fingerprint than native Cannabis flowers and highlights the need for 
more complete characterization of phytocompounds, beyond canna-
binoid content.

	 All these observations demonstrate that there is a high variabil-
ity between Cannabis strains as well as extracts and that it is dif-
ficult to maintain a standardized composition of phytochemicals in 
outdoor grown Cannabis, even with the same variety of the same 
provider. For in-door grown cultures, variability factors also apply. 
Under controlled climatic growth conditions a variation of average 
THC levels between 15.7% and 19.3% have been observed, although 
this depended on the genotype [129]. The chemical variability be-
tween extracts is mirrored in the physiological effects by the case of 
a girl with acute lymphoblastic leukemia who received five different 
extracts that differed in their effects on blast cells and on the profile 
of side effects [130]. Of interest is also a retrospective observational 
study on patients with spasticity from multiple sclerosis previously 
not improving with nabiximols (Sativex™) who had been treated 
with a non-activated oral formulation of Bedrocan™ (Cannabis flos 
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with 22% THC and < 1.0% CBD) [131]; 11 of 13 patients responded. 
Although a more detailed composition is not given, the Bedrocan ex-
tract was not only rich in THC but most likely contained a much larg-
er spectrum of phytochemicals than Sativex where the cannabinoids 
THC and CBD are enriched to approximately 70%.

	 Composition clearly matters; there is mounting evidence that ther-
apeutic effects differ not only between strains/extracts but also with 
respect to pure cannabinoids, although more systematic studies are 
necessary. It may be assumed that:

i.	 Different strains may have different therapeutic effects on the 
body and/or mind; CBD-rich (hemp) preparations (extracts) are 
likely to differ from THC-rich (drug-type) preparations (extracts)

ii.	 Due to the postulated entourage effect the therapeutic effects of 
hemp preparations (extracts) are likely to differ from pure CBD, 
and

iii.	Drug-type preparations (extracts) are likely to differ from pure 
THC

	 As to (i), differences observed depend on the condition investigat-
ed. In a study on 77 patients it was concluded that “while Cannabis 
indica strains increased energy and appetite, it is useful to note that in 
treating nausea in HIV/AIDS and orthopedic diagnosis groups, Can-
nabis sativa and C. indica strains proved equivalent” [132]. A recent 
review confirms differences between THC- and CBD-rich smoked 
products on cognitive functions [133]. Furthermore, it seems that pa-
tients prefer specific strains for treatment of specific conditions [2].

	 As to the second and third assumption (ii, iii), we have found no 
study that compares a genuine hemp extract (THC < 0.2%) with pure 
CBD. A recent publication however, describing two cases of children 
with treatment-resistant epilepsy is of interest. Children first received 
CBD-enriched extracts that contained around 90% CBD in addition 
to 3-4% THC and standard antiepileptic therapy. After 3 to 4 months 
of treatment, both children presented signs of intoxication by THC 
(inappropriate laughter/mild euphoria, ataxia, reduced attention, ir-
ritability and eye redness). As soon as the CBD-enriched extract 
(which remained the same during the initial treatment) was replaced 
by 200-300mg/day of pure herbal CBD (purity >99.6%, BSPG, UK) a 
prompt and complete improvement of all intoxication signs has been 
observed [134].

	 An overview of pre-clinical studies comparing extracts to pure 
cannabinoids is given below (Table 5).

	 In the large majority of these studies CBD- or THC-enriched ex-
tracts were used with a much higher content of the main cannabi-
noids than usually found in extracts marketed by Cannabis shops. 
Unfortunately, in no study was reference made to the composition of 
phytochemicals beyond cannabinoids. Overall, these various exper-
iments demonstrate differences but do not favour either extracts or 
pure Cannabinoids (CBD, THC); results seem to depend very much 
upon the model used. The question, as to whether a higher content of 
terpenoids and flavonoids or different ratios of CBD to THC would 
improve effects for specific purposes, remains unanswered.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Extract Comparator Effects Reference

65.6% CBD, (THC not given) CBD In vitro; effect on human bladder contractility; extract more effective than CBD [135]

64.5% CBD, 4% THC, (CBD 10mg/kg + 
THC 0.62mg/kg)

CBD (10 mg p.o./kg);
(THC had no effect)

Rat model; extract completely relieved thermal hyperalgesia and partially attenuated mechani-
cal allodynia; chronic CBD had only a partial effect [136]

17.9% CBD, 1.1% THC, 1.1% CBC (~5 to 
6 times lower amount of CBD/mg extract)

CBD, dose range paw 
swelling: 1-50mg/kg; dose 
range pain: 10-150mg/kg

Mouse model; max. effect on paw swelling and pain after 5mg CBD i.p./kg compared to 50mg 
E i.p./kg; Orally, max. effect on paw swelling and pain after 25mg CBD/kg compared to 50mg 
E/kg on swelling and 150mg E/kg on pain; E was more effective on swelling after oral, CBD 
was more effective after i.p. administration (based on the CBD content); CBD showed a bell 

shaped dose-response curve

[137]

Extract with ≈. 70% CBD (Nabidiolex) CBD In vitro, eight different cancer cell liness; E mostly equipotent to CBD; CBD was the most 
potent (CBDA the least) out of 6 pure cannabinoids [138]

Extract (≈. 70% CBD) 6.5mg E i.p./kg/dose 5mg CBD i.p./kg /dose In vivo (mice), human breast cancer xenograft; CBD was slightly more potent than the extract [138]

64.6% CBD, 2.5% THC
(Nabidiolex) CBD In vitro, Ca++ response in neurons and glia cells;

pure CBD induced a larger response than E in neurons; in glia no such difference was observed [139]

Agro-climatic factor CBD THC Influence on the content of CBD and THC

Soil temperature Soil temperature at 5 cm has a positive influence on the content of CBD

Air humidity  Air humidity has a positive influence which is more pronounced for the content of THC than CBD

Average temperature in the entire growing period  The positive influence on CBD is about twice as high as for THC

Growing Season precipitation  The negative influence of precipitations is more pronounced for the CBD content

Fertilization (K, N, P)  
(NK)

 
(PK)

Max amount of CBD observed at NK-, lowest at NPK fertilization
Max amount of THC observed at PK-, the lowest at NP fertilization

Nitrogen fertilizer  
(NPK)

 
(PK)

Lowest amount of CBD observed at NPK fertilization; 
Lowest amount of THC observed at NP fertilization

Age of leaves Older leaves contained less cannabinoids than younger ones

Stage of plant development The content of cannabinoids and terpenoids increases during growth in fiber-type but tend to decrease in the last 
stages of vegetation in drug-type Cannabis

Table 4: Influence of agro-climatic factors on cannabinoids.

Compiled from [120-123]
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	 In summary, there are a number of critical aspects relating to the 
use of hemp products, particularly with respect to extracts:

•	 Choice of the strain, its composition of phytocompounds, in addi-
tion to cannabinoids

•	 Agroclimatic/growth conditions: precipitation, sunshine, soil, use 
of fertilizers, pesticides

•	 Harvest: time, parts of the plant harvested, transport, drying and 
storage conditions

•	 Extraction: methods, solvents, temperature

	 All these factors add to the considerable heterogeneity of Canna-
bis products. Thus, extrapolation of effects observed with a specific 
strain or product to other products is problematic, even within batch-
es from the same provider. In the interest of future research and for 
the benefit of those consuming Cannabis for self-medication it would 
make sense to expand the information of products marketed beyond 
the declaration of the content of CBD and THC. This should include 
at least the name of the strain, basic information on the extraction 
method, temperature to which the product has been exposed during 
manufacturing.

	 Future clinical studies therefore should be conducted using well 
characterized, reproducible formulated products. Due to their rich 
content of terpenoids, flavonoids and other bioactive phytocom-
pounds, genuine extracts can play a role as neutraceuticals and in 
complementary medicine. With more information on the phytocom-
ponents it should be possible to profile Cannabis products for specific 
purposes.
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72.6% THC, 2.5% CBD,
(Tetrabinex) THC In vitro, Ca++ response in neurons and glia cells;

pure THC induced a larger response than E in neurons; in glia no such difference was observed [139]
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20% THC, (minor content of CBD, CBN) THC
(CBD had no effect)

In vivo, mouse MS-model; more rapid relief from spasticity with the extract than after pure 
THC but size of antispastic effect is similar; [141]

20% THC, (minor content of CBD, CBN) THC
(CBD had no effect)

In vitro, rat brain slice model of epilepsy; more rapid onset of anti-convulsant activity with the 
extract than with pure THC [141]
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