Journal of Angiology & Vascular Surgery Category: Medical Type: Research Article
How Intra-Abdominal Pressure Increment Could Affect Cardiovascular Monitoring: A Simulation Assay
- Gomes VCS1*, Raghavan ML2, Chung TKJ2, Gomes J3, Silva AQ4, Silvestre GCR4, Marques MA4, Da Silva ES4
- 1 Department Of Surgery, Vascular And Endovascular Surgery Division, Laboratory Of Medical Investigation, University Of São Paulo School Of Medicine, Brazil
- 2 Department Of Biomedical Engineering, Seamans Center For The Engineering Arts And Sciences, The University Of Iowa, Iowa, United States
- 3 Department Of Electrical Engineering, Shamah Engineering Consulting, São Paulo, Brazil
- 4 Department Of Surgery, Vascular And Endovascular Surgery Division, Laboratory Of Medical Investigation, University Of São Paulo School Of Medicine, São Paulo, Brazil
*Corresponding Author:
Gomes VCSDepartment Of Surgery, Vascular And Endovascular Surgery Division, Laboratory Of Medical Investigation, University Of São Paulo School Of Medicine, Brazil
Tel:+55 1155940531; +55 11999098280,
Email:viviancarlavascular@gmail.com
Received Date: Dec 19, 2017 Accepted Date: Mar 28, 2018 Published Date: Apr 13, 2018
Abstract
Keywords
BRIEF PARAGRAPH
INTRODUCTION
MATERIALS AND METHODS


The calculated compliance of the silicone tube was 3.246%/mmHg × 10-2 under a blood pressure of approximately 90 mmHg. Tai et al., described the compliance of human arteries (in this case, samples of external iliac arteries collected from donors of organ transplants) of approximately 3.0%/mmHg x 10-2 under similar arterial pressure [20]. This information experimentally demonstrates the biomechanical similarity between the silicone tube phantom used as specimen and an actual artery validating it as an adequate aorta replacement for the present experiment. Is important to highlight that Tai et al. studied the compliance of organ donors iliac arteries. In general, these patients are younger and have a mild degree of atherosclerosis. Ninomiya et al., demonstrated experimentally that the aging process makes the infrarenal aorta tissue less elastic / more rigid [21]. The present silicone phantom has a biomechanical behavior similar to an artery with mild atherosclerosis.



RESULTS


DISCUSSION
CONCLUSION
ACKNOWLEDGMENT
CONFLICTS OF INTEREST / SOURCES OF FUNDING
REFERENCES
- Hunter JD, Damani Z (2004) Intra?abdominal hypertension and the abdominal compartment syndrome. Anaesthesia 59: 899-907.
- Wendt E (1876) Ueber den Einfluss des intraabdominalen Druckes auf die Absonderungs Geschwindigkeit des Harness. Walter Wigand’s Buchdruckerei.
- Papavramidis TS, Marinis AD, Pliakos I, Kesisoglou I, Papavramidou N (2011) Abdominal compartment syndrome – Intra-abdominal hypertension: Defining, diagnosing, and managing. J Emerg Trauma Shock 4: 279-291.
- Emerson H (1911) Intra-abdominal pressures. Arch Intern Med (Chic) 6: 754-784.
- Kron IL, Harman PK, Nolan SP (1984) The measurement of intra-abdominal pressure as a criterion for abdominal re-exploration. Ann Surg 199: 28-30.
- WSACS (2018) World Society of the Abdominal Compartment Syndrome. What is WSACS? VA, USA.
- Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, et al. (2013) Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med 39: 1190-206.
- De Waele JJ (2008) Intra-abdominal hypertension in patients with severe acute pancreatitis. Eur J Trauma Emerg Surg 34: 11-16.
- Staelens AS, Van Cauwelaert S, Tomsin K, Mesens T, Malbrain ML et al. (2014) Intra-abdominal pressure measurements in term pregnancy and postpartum: An observational study. PLOS One 9: 104782.
- Arabadzhiev GM, Tzaneva VG, Peeva KG (2015) Intra-abdominal hypertension in the ICU - A prospective epidemiological study. Clujul Med 88: 188-195.
- Correa-Martín L, Párraga E, Sánchez-Margallo FM, Latorre R, López-Albors O, et al. (2016) Mechanical intestinal obstruction in a porcine model: Effects of intra-abdominal hypertension. A Preliminary Study. PLoS One 5: 11.
- Elvevoll B, Husby P, Øvrebø K, Haugen O (2014) Acute elevation of intra-abdominal pressure contributes to extravascular shift of fluid and proteins in an experimental porcine model. BMC Research Notes 7: 738.
- Díaz F, Erranz B, Donoso A, Salomon T, Cruces P (2015) Influence of tidal volume on pulse pressure variation and stroke volume variation during experimental intra-abdominal hypertension. BMC Anesthesiol 15: 127.
- Regli A, Mahendran R, Fysh ET, Roberts B, Noffsinger B, et al. (2012) Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal hypertension. Crit Care 16: 208.
- Kim BS, Kwon JW, Kim MJ, Ahn SE, Park HC, et al. (2011) Abdominal compartment syndrome caused by a bulimic attack in a bulimia nervosa patient. J Korean Surg Soc 81: 1-5.
- Jambet S, Guiu B, Olive-Abergel P, Grandvuillemin A, Yeguiayan JM, et al. (2012) Psychiatric drug-induced fatal abdominal compartment syndrome Am J Emerg Med 30: 513.
- Paschold M, Gockel I, Oberholzer K, Lang H, Düber C (2013) Pneumoabdomen with abdominal compartment and aortic collapse due to gastric bursting acute release by trocar insertion. Circulation 127: 417-418.
- Van Eetvelde E, Verfaillie L, Van De Winkel N, Hubloue I (2014) Acute gastric dilatation causing acute limb ischemia in an anorexia nervosa patient. J Emerg Med 46: 141-143.
- Iqbal A, Haider M, Stadlhuber RJ, Karu A, Corkill S, et al. (2008) A study of intragastric and intravesicular pressure changes during rest, coughing, weight lifting, retching, and vomiting. Surg Endosc 22: 2571-2575.
- Tai NR, Salacinski HJ, Edwards A, Hamilton G, Seifalian AM (2000) Compliance properties of conduits used in vascular reconstruction. Br J Surg 87: 1516-1524.
- Ninomiya OH, Tavares Monteiro JA, Higuchi ML, Puech-Leão P, de Luccia N, et al. (2015) Biomechanical properties and microstructural analysis of the human nonaneurysmal aorta as a function of age, gender and location: An autopsy study. J Vasc Res 52: 257-264.
- Gocmen-Mas N, Karabekir H, Ertekin T, Edizer M, Canan Y et al (2010) Evaluation of lumbar vertebral body and disc: A stereological morphometric study. Int J Morphol 28: 841-847.
- Hoskins PR, Anderson T, McDicken WN (1989) A computer controlled flow phantom for generation of physiological Doppler waveform. Phys Med Biol 34: 1709-1717.
- Cheng CP, Herfkens RJ, Taylor CA (2003) Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. J Vasc Surg 37: 118-123.
- Ravishankar N, Hunter J (2005) Measurement of intra-abdominal pressure in intensive care units in the United Kingdom: A national postal questionnaire study. Br J Anaesth 94: 763-766.
- De Laet IE, Hoste EA, De Waele JJ (2007) Survey on the perception and management of the abdominal compartment syndrome among Belgian surgeons. Acta Chir Belg 107: 648-652.
- Zhou JC, Zhao HC, Pan KH, Xu QP (2011) Current recognition and management of intra-abdominal hypertension and abdominal compartment syndrome among tertiary Chinese intensive care physicians. J Zhejiang Univ Sci B 12: 156-162.
- Malbrain ML, Chiumello D, Pelosi P, Wilmer A, Brienza N, et al. (2004) Prevalence of intra-abdominal hypertension in critically ill patients: A multicentre epidemiological study. Intensive Care Med 30: 822-829.
Citation:Gomes VCS, Raghavan ML, Chung TKJ, Gomes J, Silva AQ, et al. (2018) How Intra-Abdominal Pressure Increment Could Affect Cardiovascular Monitoring: A Simulation Assay. J Angiol Vasc Surg 3: 013.
Copyright: © 2018 Gomes VCS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
