Journal of Alternative Complementary & Integrative Medicine Category: Medicine Type: Review Article

Surgery for Chronic Back Pain or Chronic Neck Pain – Does It Work?

James David Adams1*
1 Department of pharmacology and pharmaceutical sciences, University of Southern California, Los Angeles, CA, United states

*Corresponding Author(s):
James David Adams
Department Of Pharmacology And Pharmaceutical Sciences, University Of Southern California, Los Angeles, CA, United States
Tel:+1 3234421362,
Email:jadams@usc.edu

Received Date: Dec 23, 2022
Accepted Date: Jan 04, 2023
Published Date: Jan 11, 2023

Abstract

Chronic pain frequently results in drug abuse of pain medicines and potentially the death of the patient from drug toxicity. Surgical interventions have been examined as potential cures for chronic pain. Patients are eager to find anything to help their pain. The mechanism of chronic pain does not provide a rationale for surgical intervention. Alternative therapies can be effective against chronic pain.

Keywords

Chemokine; Chronic pain; Diterpenoid; IL-17; Monoterpenoid; Transient receptor potential cation channel

Introduction

There is no scientific evidence that surgery improves chronic back pain or chronic neck pain. Meta-analysis has shown that if anything, surgery makes the pain worse [1]. This study has been criticized for selecting the wrong patients [2]. However, patient selection was done by a rigorous Cochrane procedure and was correct. Why do so some surgeons insist on doing surgery for these conditions? Why do so many patients seek to do the surgery? After many years of talking to these surgeons and surgery patients the author can only conclude that some surgeons and patients believe in the surgery and hope that it will cure chronic pain. In fact, these patients believe they have no other hope. When the surgery fails, they feel doomed to live the rest of their lives in chronic pain. However, current clinical practice suggests using alternative therapies such as acupuncture and yoga instead of surgery [3].

Surgery

There are a few conditions where surgery can help with back or neck pain. Tumors of the spine or spinal cord cause pain that can be alleviated with surgery, as discussed in a review of randomized, clinical trials [4] Lumbar disc prolapse also results in pain that can be somewhat alleviated by surgery, as presented in a Cochrane analysis of clinical trials [5]. Prolapsed disc is frequently associated with age related disc degeneration. The pain from a prolapsed disc usually improves after a few days and is gone within 4 to 6 months, even without surgery, as discussed in a systematic review of clinical trials [6]. Surgery adds an unnecessary procedure for prolapsed disc, an extended recovery time and the potential for surgery induced chronic pain. However, prolapsed disc can produce chronic pain, or the medications used to treat prolapsed disc pain cause chronic pain [7]. Even after the prolapsed disc is healed, chronic pain remains and can endure for years.

What is Chronic Pain?

There is a perception that chronic pain comes from an internal problem, such as a spinal problem, neural inflammation in the brain or brain stem [8]. This central sensitization theory is supported by animal model work. However, this approach to chronic pain has not resulted in effective surgery, therapy or cures for chronic pain. In fact, all of the available oral therapies for chronic pain do not work or make the pain worse and prolong the pain [7,9]. In addition, surgery that might alleviate inflammation of the spinal cord is not effective against chronic pain [1]. 

Central sensitization involves the recruitment of signals from painful and nonpainful stimuli that come from an unspecified place outside the brain [8]. These painful and nonpainful signals are summated in the brain to produce a nociceptive signal. This especially involves dorsal horn neurons in the brain stem. It is not clear what change in the brain leads to the summation of nonpainful signals, which is not normal for the brain. In this mechanism, pain is no longer coupled with a painful stimulus and becomes autonomous. Brain regions such as the parabrachial nucleus, the periaqueductal gray, the superior colliculus, and the prefrontal cortex are involved in this mechanism. Glutamate receptors including NMDA receptors become automatically active in central sensitization. Ketamine, an NMDA receptor inhibitor, is effective in the treatment of chronic pain, but only for a short time, as discussed in a meta-analysis of randomized, clinical trials [10]. Long term ketamine therapy does not cure chronic pain. This implies that NMDA receptor sensitization is not the stimulus that causes nonpainful signals to be summated in the brain. 

Various nociceptive signaling molecules are involved in the central sensitization mechanism in the brain including bradykinin, substance P, brain derived neurotrophic factor and serotonin [8]. Cyclo-oxygenase 2 becomes induced in dorsal horn neurons and makes prostaglandins that cause pain. Macrophages, neutrophils and T cells infiltrate into the brain stem and produce chemokines, prostaglandins and other inflammatory factors [8]. It is not clear what causes these changes to occur in the brain and brain stem. Pain dependent alterations to skin sensory neurons may cause these changes in the brain and brain stem. Damage to skin sensory neurons may incite neuropathic pain sensitization in the brain [11]. 

Recent evidence demonstrates that Transient Receptor Potential (TRP) cation channels in skin sensory neurons are the primary nociceptors in the body [12,13]. There are at least 28 types of TRP channels that exist in nonoverlapping populations of skin sensory neurons. TRP channels are activated by painful stimuli, heat, cold, stretch and other stimuli. Medicines that inhibit these receptors in the skin are more powerful than morphine at relieving pain [14]. In fact, many monoterpenoids are effective inhibitors of various types of TRP channels [13]. They penetrate into the skin, inhibit pain and evaporate from the skin without poisoning the body. 

Chronic pain comes from the skin [9,15,16]. In fact, the skin generates pain in chronic pain, the pain chemokine cycle. Damage to a sensory neuron by a painful stimulus causes the neuron to release chemokines that attract monocytes and neutrophils to the site. Monocytes release prostaglandins to cause pain. Neutrophils release leukotrienes that cause long term pain by activating TRP channels. Bradykinin is released by damaged keratinocytes to cause pain and inflammation. Chemokines induce IL-17 release by skin resident T cells. IL-17 induces chemokine production by macrophages and sensory neurons. 

The pain chemokine cycle also causes neurogenic inflammation [17] due to the release of neurokinins, including substance P, and other inflammatory proteins from sensory neurons. These inflammatory proteins may penetrate into the brain from the blood [18] and may cause changes in brain stem and brain neurons leading to central sensitization. In addition, chemokines released into the blood activate macrophages, neutrophils and T-cells that penetrate into the brain, cause inflammation and chemokine release in the brain [19] that may be involved in central sensitization. Therefore, chemokines generated at the site of pain in the skin can result in the generation of chemokines in the brain. This establishes a connection between the peripheral site of chronic pain in the skin and central sensitization.

How is Chronic Pain Treated?

Chronic pain is frequently treated with chronic drug therapy that is only effective for a short period, as discussed in a review of randomized, clinical trials [20]. This may be followed by hyperalgesia if the drug therapy induces chemokine formation, such as with opioids and nonsteroidal anti-inflammatory drugs [7]. For the patient, drug toxicity problems may become life threatening. None of the drugs available cure chronic pain. The current approach to drug development for chronic pain appears to be focused on finding new opioids or new nonsteroidal anti-inflammatory agents that may not be life threatening for patients. 

Acupuncture is used in the treatment of chronic pain and may improve function,patient attitude and pain [21,22]. A recent Cochrane meta-analysis study found that acupuncture is better than no treatment, but did not provide a cure for chronic pain [21]. Even though acupuncture does not cure chronic pain, at least patients do not die from acupuncture. 

Exercise can decrease chronic pain in many patients, including patients with fibromyalgia and chronic low back pain, as presented in a review of randomized, clinical trials [23]. Of course, exercise is not recommended in exercise induced injury. The therapist must work with the patient to individualize exercise and help with the initial pain when starting the exercise regime. Moderate exercise is anti-inflammatory since it decreases chemokine receptor expression and inhibits the migration of inflammatory leukocytes into the brain [24]. The decrease in chemokines is especially found in life long exercisers [25]. 

Other alternative therapies for chronic back pain include chiropractic care, osteopathic manipulation, yoga and tai chi. Clinical experience with these techniques has shown they decrease chronic pain, are safe, but do not cure chronic pain [26-28].

Two Cures for Chronic Pain

Plant derived mixtures of monoterpenoids, diterpenoids and other compounds such from Salvia mellifera or Artemisia californica can cure chronic pain [9,15,16,17,29]. Monoterpenoids inhibit TRP channels, chemokine formation, pain and help patients stop taking opioids [9]. Inhibition of TRP channels can stop the pain chemokine cycle. It is crucial to use a mixture of monoterpenoids to inhibit as many types of TRP channels as possible. This may provide effective inhibition of chemokine formation. Diterpenoids inhibit IL-17 formation in the skin which may result in inhibition of chemokine formation in the skin and brain [29,30]. Use of a mixture of monoterpenoids and diterpenoids results in inhibition of TRP channels and chemokine formation. These plant derived medicines have been used for many years to treat and cure chronic pain patients.

Conclusion

Chronic pain can be cured with plant medicines such as from S mellifera or A californica. Moderate exercise, such as walking, is recommended in the treatment of all chronic pain patients. Surgery should not be recommended in these patients.

References

  1. Zaina F, Lane CT, Carragee E, Negrini S (2016) Surgical versus nonsurgical treatment for lumbar spinal stenosis. Cochrane Database System Rev 2016: CD010264.
  2. Aleem I, Drew B (2017) Cochrane in CORR: surgical versus nonsurgical treatment for lumbar spinal stenosis. Clin Orthop Relat Res 475: 2632-2637.
  3. Varrassi G, Moretti B, Pace MC, Evangelista P, Iolascon G (2021) Common clinical practice for low back pain treatment: a modified Delphi study. Pain Ther 10: 589-604.
  4. Walha S, Fairbanks SL (2021) Spinal Cord Tumor Surgery. Anesthesiol Clin 39: 139-149.
  5. Gibson JN, Grant IC, Waddell G (1999) The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis. Spine 24: 1820-1832.
  6. Wong JJ, Côté P, Quesnele JJ, Stern PJ, Mior SA (2014) The course and prognostic factors of symptomatic cervical disc herniation with radiculopathy: a systematic review of the literature. Spine J 14: 1781-1789.
  7. Adams J (2022) How do long term oral pain killers enhance pain and promote chronic pain? OBM Integ Comp Med 7: 1-3.
  8. Latremoliere A, Woolf CJ (2009) Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J Pain 10: 895-926.
  9. Adams J (2021) The proper treatment of pain and chronic pain Artemisia californica. Arch Neurol Neurosci 12: 1-6.
  10. Orhurhu V, Orhurhu MS, Bhatia A, Cohen SP (2019) Ketamine Infusions for Chronic Pain: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesth Analg 129: 241-254.
  11. Schaible HG, Ebersberger A, Natura G (2011) Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arth Res Ther 13: 210-218.
  12. Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75: 1262-1279.
  13. Premkumar L (2014) Transient receptor potential channels as targets for phytochemicals. ACS Chem Neurosci 5: 1117-1130.
  14. Fontaine P, Wong V, Williams T, Garcia C, Adams J (2013) Chemical composition and antinociceptive activity of California sagebrush (Artemisia californica). J Pharmacog Phytother 5: 1-11.
  15. Adams J (2017) Chronic pain can it be cured? J Pharmaceut Drug Devel 4: 104-109.
  16. Adams J (2020) The misery of pain and chronic pain. Chronic Pain Manag 4: 122-123.
  17. Adams J (2019) Chronic pain in the skin and neurogenic inflammation. J Altern Complement Integr Med 5: 073.
  18. Spitznagel H, Baulmann J, Blume A, Unger T, Culman J (2001) C-FOS expression in the rat brain in response to substance P and neurokinin B. Brain Res 916: 11-21.
  19. Takeshita Y, Ransohoff RM (2012) Inflammatory cell trafficking across the blood-brain barrier (BBB): Chemokine regulation and in vitro models. Immunol Rev 248: 228-239.
  20. Nijs J, Leysen L, Vanlauwe J, Logghe T, Ickmans K, et al. (2019) Treatment of central sensitization in patients with chronic pain: time for change? Expert Opin Pharmacother 20: 1961-1970.
  21. Mu J, Furlan AD, Lam WY, Hsu MY, Ning Z, et al. (2020) Acupuncture for chronic nonspecific low back pain. Cochrane Database Syst Rev 12:
  22. Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, et al. (2012) Acupuncture for chronic pain individual patient data meta analysis. Arch Intern Med 172: 1444-1453.
  23. Borisovskaya A, Chmelik E, Karnik A (2020) Exercise and Chronic Pain. Adv Exp Med Biol 1228: 233-253.
  24. Barry JC, Simtchouk S, Durrer C, Jung ME, Little JP (2017) Short-Term Exercise Training Alters Leukocyte Chemokine Receptors in Obese Adults. Med Sci Sports Exercise 49: 1631-1640.
  25. Lavin KM, Perkins RK, Jemiolo B, Raue U, Trappe SW, et al. (2020) Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol 128: 87-99.
  26. Hawk C, Whalen W, Farabaugh RJ, Daniels CJ, Minkalis AL, et al. (2020) Best Practices for Chiropractic Management of Patients with Chronic Musculoskeletal Pain: A Clinical Practice Guideline. J Alt Comp Med 26: 884-901.
  27. Coulter ID, Crawford C, Hurwitz EL, Vernon H, Khorsan R, et al. (2018) Manipulation and mobilization for treating chronic low back pain: a systematic review and meta-analysis. Spine J 18: 866-879.
  28. Urits I, Schwartz R, Orhurhu V, Maganty N, Reilly B, et al. (2021) A Comprehensive Review of Alternative Therapies for the Management of Chronic Pain Patients: Acupuncture, Tai Chi, Osteopathic Manipulative Medicine, and Chiropractic Care. Adv Ther 38: 76-89.
  29. Adams J (2018) Chronic pain two cures. OBM Integ Comp Med 3: 035.
  30. Adams JD, Guhr S, Villaseñor E (2019) Salvia mellifera - how does it alleviate chronic pain? Medicines 6:

Citation: Adams JD (2023) Surgery for Chronic Back Pain or Chronic Neck Pain – Does It Work? J Altern Complement Integr Med 9: 314.

Copyright: © 2023  James David Adams, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Herald Scholarly Open Access is a leading, internationally publishing house in the fields of Sciences. Our mission is to provide an access to knowledge globally.



© 2024, Copyrights Herald Scholarly Open Access. All Rights Reserved!