Background: Long-term mortality of critically ill patients who undergo tracheostomies is not well known.
Objective: To determine what percentage of patients remains alive after receiving tracheostomy after respiratory failure.
Methods: We performed a single center, retrospective analysis of patients undergoing tracheotomies from our 986 bed tertiary care, urban, teaching, university hospital. With strict adherence to HIPAA rules, one year death data was collected by cross matching social security numbers and the death master file of the National Technical Information Service updated to March 2013. Using this government sponsored website, patients who died in sites outside of our institution were identified.
Results: A total of 430 patients were identified and tracked based on their social security number. Only 74% of patients survived to discharge. There were no deaths attributable to the procedure itself such as bleeding, loss of airway, or surgical site infection. Overall survival at one year was 53%. Outcomes were worse for the Medical Intensive Care Unit (MICU) subset of patients with only 46% of patients alive at one year. Neurologic Intensive Care Unit (NICU) patients did better at 59% survival. Surgical Intensive Care Unit (SICU) patients did best at 63% survival. Surprisingly, 7% of patients died within one week of tracheostomy.
Conclusion: Patients who receive a tracheostomy due to their critical illness often have poor long term survival. This mortality was not procedurally related, but appears to be a marker of underlying illness. This data is important to share with patients and family members as the decision is made to get informed consent for tracheostomy.
Decision making; Palliative care; Tracheostomy
Trach: Tracheostomy
HIPAA: Health Insurance Portability and Accountability Act of 1996
PHI: Privacy of Health Information
ICU: Intensive Care Unit
MICU: Medical Intensive Care Unit
NICU: Neuro Intensive Care Unit
SICU: Surgical Intensive Care Unit
The long term outcomes of tracheostomy in a critically ill patient are unknown. Many studies and meta-analyses have been done showing possible benefits of tracheostomy [1]. The benefits are often described in short-term endpoints such as ICU mortality, length of stay, nosocomial pneumonia, and duration of mechanical ventilation [2,3,4]. Very little is known about the long term mortality or outcomes of patients who receive a tracheostomy because many studies use 30-day mortality [5,6]. Information on long term outcomes is potentially important for decision making. Our goal of this study was to determine long-term survival of those who received a tracheostomy after a critical illness.
Frequently when patients receive tracheostomies and leave the Intensive Care Unit (ICU), continuity of care with the ICU team is lost, and the intensivist rarely knows what happens to these patients. Since clinical practice often varies from well controlled clinical studies [7,8], there is tremendous heterogeneity in the literature about reported mortality in randomized studies [6]. Knowledge of what happens to these patients is made worse by poor follow up after their transfer to Long Term Acute Care Hospital (LTACH) for vent liberation or by re-admission to other health care institutions [9]. Even after discharge to an LTACH, complex health care issues remain [10]. While the liberation from ventilation rates have been reported by Jubran et al., our goal of this project was to determine the long term morbidity and mortality of tracheotomy patients [11]. During the project we found it was difficult to contact family members to determine a patient’s functional status, morbidity or mortality. Given the high mortality of the pilot project, we decided to change our scope to measure the mortality of patients who had a tracheostomy placed in the ICU. Using the National Registry managed by the United States Federal Government, we were able to track patients based on social security numbers. The unique part of this retrospective study was using the National Registry to track outcomes even if the patient left the hospital, health system, or state. This project sought out patients who underwent tracheostomy as routine care, and who were not involved in study protocols, since this may reflect a different patient population that received different care or follow up.
Our electronic medical records search identified 454 tracheostomies that were performed by the trauma service. Of these, 24 patients did not have valid US Social Security numbers to compare against the national federal registry; hence only 430 patients were able to be traced after discharge. The average patient age was 61.8 years, and 60% were male. The distributions of ICU types were: SICU 102, NICU 117, and MICU 211. The largest percentages of ICU diagnoses were: unspecified respiratory failure 23%, sepsis 14%, and intracranial hemorrhage 10%. The remaining diagnoses are listed in table 1. Historical average APACHE II scores for the MICU on admission were 18 (± 9.0) [14]. Number of days of intubation prior to tracheotomy was 10.8 (± 6.4) days. The three ICU types varied in timing to tracheotomy: SICU 10.5 (± 8.0) days, NICU 9.1 (± 10.0) days, and MICU 11.9 (± 4.8) days. The average ICU stay was 31.6 (± 28.4) days with individual break downs of SICU 33.2 (± 28.0), NICU 26.7 (± 10.0), and MICU 33.7 (± 30.5). Average hospital length of stay was 38.5 (± 21.8) days with individual break downs of: SICU 45.8 (± 76.8), NICU 30.8 (± 21.4) days, and the MICU was 39.1 (± 26.0) days.
80 (19%) | Primary respiratory failure- Not specified |
60 (14%) | Sepsis |
45 (10%) | Intracranial Hemorrhage (ICH) |
36 (8%) | Spinal process |
32 (7%) | Abdominal process |
27 (6%) | Pneumonia |
26 (6%) | Cerebral vascular event |
20 (5%) | Encephalopathy |
19 (5%) | Motor Vehicle Accident (MVA) |
15 (3%) | Post-Surgery |
14 (3%) | Cardiogenic shock |
9 (2%) | Central Nervous System infection |
9 (2%) | Cardiac arrest |
9 (2%) | Cardiac arrest |
8 (2%) | Gastrointestinal Bleed |
6 (1%) | Liver failure |
6 (1%) | Bone Marrow Transplant |
6 (1%) | Aspiration Pneumonia |
5 (1%) | Pulmonary Embolism |
4 (1%) | Gun Shot Wound |
3 (1%) | Pancreatitis |
454 430 318 229 |
Tracheostomies performed between January 2008 and December 2010
|
Patients included in the study
Timing of Hospital Death Post Tracheostomy
|
|
Patients discharged alive (74% of original 430 patients)
Timing of Death Post Hospital Discharge
|
|
Alive over 1 year (53% of original 430 patients) |
Table 2: Timing of Death from Post-Tracheostomy Placement.
There were no tracheostomy associated deaths. No cases required antibiotics to treat local surgical infections. No cases had to go to the operating room for bleeding. No case had a lost airway requiring a re-oral intubation.
The goal of this study was to help determine the long term mortality of tracheostomy even after hospital discharge. Understanding the long term outcomes of these patients may be potentially useful in informed decision making when considering tracheostomy. Approaching families early in the ICU course is a growing trend across the country [1]. Earlier previous studies have suggested that early tracheostomy reduces length of stay in the ICU. Due to resource allocation and cost containment efforts, earlier time to tracheotomy became a trend [15]. Some of these tracheostomies are performed to facilitate patient transfer to long term ventilator facilities. However, there were still some patients that had a prolonged hospital stay after tracheostomy was performed with a mean hospital length of stay of 39 days. Although most of the tracheostomies at our center were done at 10.8 days (± 6.4) which is neither early nor late, hospital mortality still approached 26%. This mortality was associated with the underlying disease state since there were no identifiable procedure related mortalities or unforeseen events associated with bleeding, local infection, or lost airway. The lack of complications shows that the procedure can be done in critically ill patients safely at the bedside, which is consistent with other publications [16].
The most surprising finding was the high hospital mortality. Of the 112 hospital deaths, 51 patients were converted to comfort measure and died in the hospital. The most common diagnosis of these patients was pneumonia. Respiratory failure comprised 40% of the patients, and 14% of the patients had sepsis (not including pneumonia). Despite the fact the average time to tracheotomy was 12.5 (± 5.3) days, the average survival was 38.8 (± 20.6.5) days. Given this long survival, the need for tracheotomy is understandable since the hospital stay was longer than the traditional 21 days that is typically considered as the maximum duration of oral intubation. The patients that generated wide standard deviation were most interesting: specifically the -22.5 days sub-population. This group would be the sub-group who died early post tracheotomy. Of particular interest was this large number of patients who died in the first week post tracheostomy. The most frequent diagnoses were pulmonary related processes (pneumonia, non-specific respiratory failure and pulmonary emboli). This raises the question if there are ways to potentially avoid this procedure in these early mortality groups. The high, early mortality reflects the multiple pressures to early tracheotomy due to many factors including patient comfort, finance, disposition, and ease of weaning.
The data reported here was collected prior to the release of TracMan study [17]. Our selection of patients likely represents similar populations to the TracMan study. Our retrospective analysis revealed a broad perspective of what occurs in a large urban university hospital. The generality of this paper is not intended to be applied to individual disease states. Instead it is intended to help families understand that post-ICU respiratory failure that requires a tracheostomy carries a high mortality even after discharge from the hospital. This mortality rate can be seen in other studies. TracMan study also had a similar 20% one month mortality [17]. It would have been helpful to correlate mortality with traditional scoring systems such as Sequential Organ Failure Assessment (SOFA) or APACHE II, but this is very difficult to compare due to the retrospective nature of the study [14,18]. Intubation affects the verbal points of the Glasgow Coma Score needing to calculate the APACHE II score.
As there is a wide standard deviation for time to tracheotomy (6.4 days), there was also a wide range of time to tracheostomy amongst clinicians. Even when done by study protocols, there is still variation in time to tracheostomy. Although subgroup analyses create smaller groups, the Neuro ICU tended to perform tracheostomy earlier than medical ICUs with higher percentage one year survival. This difference can be explained by different underlying diagnosis such as stroke and intracranial hemorrhage compared to highly unpredictable sepsis mortality.
The discussion of “need for tracheotomy” is often an important time in deciding goals of care in the ICU. Families need to understand that a patient may survive the acute critical care illness, but often die during the post ICU period. Families often factor long-term outcomes into the decision. Families often have a hard time grasping the “big picture” of what their loved one will be like post tracheostomy, but they must be part of the decision making team. The shared decision making model has been the standard of care in the United States for over a decade [19]. Ideally patients can define their goals of health care depending on quality of life and personal, religious, and social values. Patients choose differently based on their own intrinsic beliefs. For example when patients with ALS decide if they want a tracheostomy to prolong life, they usually have time to weigh the risks and benefits. As the disease progresses to the point of airway compromise, different decisions are made based on individual preference [20]. In the ICU, families become surrogate decision makers. It is our role as physicians to share, to the best of our knowledge, long-term outcomes of patients needing tracheostomy. This paper addresses survival of patients who receive their tracheostomy in the setting of acute critical illness. This project did not address patients who receive tracheostomy for progressive disease or malignancy.
The shortcomings of the study are that it is a retrospective study which is prone to inherent bias of retrospective analysis. Sub-group analysis of different populations was intentionally not done. The small numbers of each diagnosis, and the lack to data to exactly define each patient and patient population would be fraught with error. The intent was to develop some background data about what happens to patients post ICU, so families can make the best decisions. Similar studies have been done in nephrology to help paint big picture ideas [21]. The high overall mortality in this ICU group suggests that tracheostomy is a marker of overall illness, similar to Percutaneous Endoscopic Gastrostomy tube (PEG). Although the complication rates are low, there are many downstream sequela that are not understood [22,23].
While being a relatively safe procedure, tracheostomy, is associated with high mortality at one year which implies that the prolonged respiratory failure with need for tracheostomy is a marker of overall illness and comorbidity. This information is potentially important during informed decision making. Better tools are needed to identify patients at highest risk of mortality both in the short term and long term after tracheostomy.
Citation: Restrepo R, Kahn D, Patel P, Awsare B, Baram M (2015) One Year Mortality Rates of Tracheostomy Cases: Life after the Knife. J Emerg Med Trauma Surg Care 2: 006.
Copyright: © 2015 Ricardo Restrepo, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.